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10 0.1. About This Book

0.1 About This Book

This book is a write-up of lectures given by the author at Kansas State University. The main
audience of the course are students with prospective careers in elementary school education.
Math courses like this determine the success of future generations in mathematics, sciences,
and technology.

Note that this course is not about methodology of mathematics. The main subject of
the course is mathematics itself. Our primary goal is to achieve a deeper understanding of
notions that stand behind basic mathematics of elementary school. In these lectures, we
review elementary mathematics within the larger picture of modern mathematics.

The following diagram describes the relations between chapters.

Each chapter includes the overview of definitions, methods, and solved examples. A list of
exercises is provided at the end. It is planned to publish the list of answers to the exercises
in a separate appendix.

0.2 About the Author

Natasha Rozhkovskaya is Professor of Mathematics at Kansas State University, USA. Her
research interests are representation theory and quantum integrable systems. She is a co-
author of one research monograph and the author of two books on popularization of math-
ematics. Her twenty years of teaching experience include a broad range of math classes,
from math circles for seven-years old to advanced topic courses in representation theory for
graduate students.
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1. SETS

1.1 The Language of Sets

Sets

No matter what kind of objects we count in our daily life (for example, apples, birds,
money, days, people), we use the same mathematics. And it always works since an abstract
notion of a number does not need to know the characteristics of the objects being counted.
In this chapter, we go further and introduce an abstract language of sets. It describes math-
ematically collections of objects.

A set is a collection of objects. Objects in the collection are called elements of the set.

Example 1.1 We can talk about the set of three colors

S= {Red, Blue, Green}

This set is defined by listing its elements. In mathematical notation, the elements of a
set in the list are separated by commas and the list is enclosed with the braces { and }.
Sets are usually denoted by capital letters. We used the letter S to denote the set.

Example 1.2 Let K be the set of states that have common border with Kansas. We
described this set by words, using the defining property of its elements. We can also list
all elements of the set K :

K= {Nebraska, Missouri, Colorado, Oklahoma}

12
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The set K in Example 1.2 contains four elements. In mathematical notation, we write
this fact as |K | = 4. We say that A is a finite set if it consists of a finite number of elements. In
this case, the elements can be listed. Sets which are not finite are called infinite.

Remark The notation #K and n(K) for the number of elements of a set is also commonly
used.

Example 1.3 The set of all counting numbers {1,2,3, . . . } is infinite. The set {1,2,3,4,5}
is finite.

In many cases, a set can be defined in one of the following ways:

• through verbal description

• listing elements of the set

• using formal mathematical symbols that describe the defining properties of ele-
ments of the set

Example 1.4 LetA be the set of all counting numbers less than 13. This set is described
by words (verbal description). The list of its elements provides another description

A = {1,2,3,4,5,6,7,8,9,10,11,12}

One can also convert the verbal description to mathematical formulas. The result may
look like

A = {a is a counting number |a < 13}

Here, “a is a counting number” specifies that the set consists of numbers of a certain
type and a < 13 specifies that we want to consider the numbers possessing this partic-
ular property.

a ∈ A means that a is an element of a set A, while a < A means that a is not an element of
a set A.

Example 1.5 B = {1,2,3,4,5}. Then 2 ∈ B, but 7 < B. Let A = { , , }. Then ∈ A,
but < A.

The symbol � denotes the set containing no elements. This set is called the empty set.
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Example 1.6 The set of people who live on the planet Saturn has no elements. This
set is empty.

1.2 Examples of Sets of Numbers

We work with different sets of numbers that play an important role in mathematics.

• Counting numbers are {1,2,3,4,5,6, . . . }.

• Whole numbers include zero and counting numbers {0,1,2,3,4,5,6, . . . }.

• Even counting numbers include counting numbers that are multiples of two
{2,4,6,8, . . . }.

• Odd counting numbers include counting numbers that are not multiples of two
{1,3,5,7 . . . }.

1.3 Subsets and Equal Sets

We introduce other notions of set theory with the help of diagrams. These diagrams are
called Venn diagrams.

A ⊂ B

The rectangle represents the universal set U . The universal set is our “world.” For example,
if we solve a problem about people, U is the collection of all people; we do not consider
chairs, cats, dogs, or any other objects. The ovals A and B represent sets of elements from
the universal set U . We also see that A is contained in B, which represents the situation
where A is a subset of B.

A set A is called a subset of a set B if every element of A is also an element of B. We
write A ⊂ B.

Example 1.7 A = {a,b,c,d,e} and B = {a,c, f , e,b,g,d}. Is it true that A ⊂ B?

Solution It is true since every element of A can be found in the list of elements of B.
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Example 1.8 Are these statements true for any set A:

(a) A ⊂ A (b) � ⊂ A

Solution Both statements are true.

(a) A ⊂ A since every element of A belongs to A.

(b) The argument behind this statement is a little bit twisted. The empty set � contains
no elements. In particular, it contains no elements that do not belong to A. Hence we
conclude that � is a subset of any set.

A subset A of a set B is called proper if it is not the whole set and is not empty: A ⊂ B,
A , B, and A , �.

Example 1.9 List all subsets of the set S = {1,2,3,4}.

Solution

• Subsets with four elements: {1,2,3,4} (this is the set S itself).

• Subsets with three elements: {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.

• Subsets with two elements: {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}.

• Subsets with one element: {1}, {2}, {3}, and {4}.

• Subsets with no elements: �.

There are 16 subsets of the set of four elements. The subsets S and � are not proper,
whereas the remaining subsets are proper.

We say that two sets A and B are equal and write A = B if A and B are identical as
collections of elements.

Note that when we compare sets with listed elements, the order of elements in the list is
not important.

Example 1.10 {a,b,c,d} = {c,b,d,a} = {b,a,d,c} = . . .

Also, listing an element two or more times does not change the set. Usually, we list each
element only once.

Example 1.11 {a,d,d,d} = {a,d}.
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1.4 Operations with Sets

The common part of two ovals in the diagram represents the intersection of sets A and B.

A∩B

A∩B denotes the set of all elements that belong to both A and B. This set is called the
intersection of A and B.

Example 1.12

(a) {a,b} ∩ {c,d,e, f } = �

(b) {a,b,c, f } ∩ {c,d,e, f } = {c, f }

(c) {1,2, , A} ∩ {1,2, ,3,A} = {1,2,A}

(d) A∩� = �

Example 1.13 A = {1,2,3,4,5} and B = {2,4,6,8,10}. List all elements of A∩B.

Solution A∩B = {2,4}.

Remark To find all elements of the intersection, one can organize the work as follows.
For each element of A check if it belongs to B. If yes, include this element in the intersection.
If no, skip it and check the next one.

The shaded part of the diagram is called the union of A and B.

A∪B

A∪B denotes the set of all elements that belong to A or B (or both). This set is called
the union of A and B.
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Example 1.14

(a) {a,b} ∪ {c,d,e, f } = {a,b,c,d,e, f }

(b) {a,b,c, f } ∪ {c,d,e, f } = {a,b,c,d,e, f }

(c) {1, 2, , } ∪ {1, , 3, A} = {1,2,3, , , A}

(d) A∪� = A

Example 1.15 A = {a,b,c} and B = {b,c,d,e}. List all elements of A∪B.

Solution A∪B = {a,b,c,d,e}.

Remark To find all elements of the union, one can organize the work as follows. List all
elements of A first, and then add all elements of B that are not yet included in the list.

Remark The symbols for the union and intersection are often confused. One can memo-
rize that ∪ looks like the letter U and hence stands for Union.

The shaded part of the diagram is called the difference of the set B from the set A.

A−B

A−B denotes the set of all elements of A that do not belong to B: x ∈ A, but x < B. This
set is called the difference of the set B from the set A.

Example 1.16 A = {a,b,c,d,e} and B = {b,c,d,e, f ,g}. List all elements of A − B and
B−A.

Solution A−B = {a} and B−A = {f ,g}.

Remark A−B and B−A are different sets!

The area outside a set A is called the complement of A.



18 1.4. Operations with Sets

A

A denotes the set of all elements in the universal set U that do not belong to A. This
set is called the complement of A.

Remark In some books, the notation Ac is used for the complement of a set A.

The notion of A depends on the universal set, which can be seen from the following
example.

Example 1.17

(a) LetU be the set of whole numbers, and let A be the set of odd counting numbers.
Describe A.

(b) Let U be the set of counting numbers, and let A be the set of odd counting num-
bers. Describe A.

Solution

(a) A = {0,2,4,6,8 . . .}

(b) A = {2,4,6,8 . . .}

Note that the answers to (a) and (b) are different because the universal sets are different.

Example 1.18 Find

(a) �∩A (b) �∪A (c) A−A

Solution

(a) �∩A = � (b) � ∪A = A (c) A−A = �
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1.5 Operations with Sets by Venn Diagrams

Example 1.19 Shade the region representing A∩B.

Solution Problems like this one become easier if we break it up into separate steps.
First, let us shade A and B.

A B

The intersection of A and B contains the parts of the diagram that are shaded in both inter-
mediate sketches.

Answer: A∩B

Example 1.20 Shade the region representing (A−B)∪ (B−A).

Solution First, we draw the diagrams of (A−B) and (B−A).

A−B B−A

The union of these two sets contains the parts that are shaded in at least one intermediate
sketch.



20 1.5. Operations with Sets by Venn Diagrams

Answer: A∩B

Example 1.21 Shade the region representing (A∪C)∩B.

Solution Again, we do one step at a time. First, we shade in the intermediate diagrams
of A, B, and C.

A B C

Then we shade A∪C which corresponds to at least one shading in the diagrams of A and C.

A∪C

The final answer corresponds to the shading in both diagrams of A∪C and B.

Answer: (A∪C)∩B

We learned to represent formulas with set operations by diagrams. Let us go in the
opposite direction and reconstruct a formula from a shaded diagram.
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Example 1.22 Represent the shaded region as a result of operations with sets.

Solution Note that there can be more than one possible solution of this problem. The
two parts of the shaded region remind us of intersections.

A∩C B∩C

If we take the union of (A∩B)∪ (B∩C), we almost get the desired picture, but with one extra
shaded area.

(A∩C)∪ (B∩C)

This extra shaded area is A∩B∩C. We can remove it by taking the difference.

(A∩C)∪ (B∩C)−A∩B∩C

Answer: (A∩C)∪ (B∩C)−A∩B∩C.

1.6 Word Problems Solved by Venn Diagrams

There are word problems of a certain type that can be solved effectively with the help of
Venn diagrams.
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Example 1.23 In a class, 40 students visited Nebraska, 30 students visited Ohio, one
student visited both Nebraska and Ohio. How many students visited Nebraska or Ohio
(at least one of these states)?

Solution In problems like this one, we want to avoid counting the same elements twice.
We can write the problem in the language of sets. Let N be the set of students who visited
Nebraska, and let H be the set of students who visited Ohio:

|N | = 40, |H | = 30, |N ∩H | = 1, |N ∪H | =?

In each part of the diagram, we write the number of elements, starting with |N ∩H | = 1. We
write the number that corresponds to the bounded part. The whole oval N has 40 elements.
Thus, the remaining part without the intersection has 40 − 1 = 39 elements. Similarly, the
remaining part of H has 30− 1 = 29 elements.

Thus, the number of elements of the union N ∪H is just the sum of numbers in the parts:

|N ∪H | = 39 + 1 + 29 = 69

Answer: 69 students.

Example 1.24 In a science classroom, 19 students have at least one brother, 15 stu-
dents have at least one sister, 7 students have at least one brother and at least one
sister, and 6 students do not have any siblings at all. How many students are in the
classroom?

Solution We formulate the problem in the language of sets. Let U be the set of all
students in the class. It is the universal set. Let B be the set of students with at least one
brother, and let S be the set of students with at least one sister. Then, in terms of sets, we
have

|B| = 19, |S | = 15, |B∩ S | = 7, |B∪ S | = 6(outside B and S), |U | =?

In each part of the diagram, we write the number of elements, starting from |B∩ S | = 7.
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Then |U | = 12 + 7 + 8 + 6 = 33.
Answer: 33 students.

Example 1.25 Find |S ∩ T | if |S | = 18, |T | = 12, and |S ∪ T | = 23.

Solution We need to find |S ∩ T |, so we cannot fill in numbers in the intersection first
as in the previous examples. Nevertheless, let us denote x = |S ∩T | and express the values in
the parts of the diagram through x.

If we add all the parts, we get the number of elements of S ∪ T . This allows us to find x:

|S ∪ T | = 18− x+ x+ 12− x = 30− x
23 = 30− x
x = 7

Answer: |S ∩ T | = 7.

1.7 Exercises

1.7.1 Examples of sets

Exercise 1.1 Describe the following sets by the listing method or indicate that the set
is empty.

(a) The whole numbers less than 8.

(b) The odd counting numbers between 4 and 20.

(c) The whole numbers less than 0.

(d) The odd counting numbers less than 10 and divisible by four.
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(e) The whole numbers between 4 and 12 (inclusive).

(f) The whole numbers strictly less than 15, but not less than 5.

(g) The even counting numbers less than 15.

(h) The odd counting numbers less than 20, but greater than 18.

Exercise 1.2 Which of the following sets are equal to {0,1,2,3,4}?

(a) {4,3,2,1,0}.

(b) {0,4,2,6.1}.

(c) The whole numbers less than 5.

(d) The counting numbers less than 5.

Exercise 1.3 Which of the following sets are equal to {6,8,10}?

(a) {10,8,6}.

(b) {6,6,10,8}.

(c) The even numbers between 5 and 11.

(d) The intersection of the sets {1,2,3,4,5,6,7,8,9,10} and {5,6,7,8,9,10,11}.

(e) The intersection of the sets {1,2,3,4,5,6,7,8,9,10} and {6,8,10,12}.

1.7.2 Subsets

Exercise 1.4 List all subsets of the set { , ,A}. Which of them are proper?

Exercise 1.5 List all subsets of the set {1,2,3,4}. Which of them are proper?

Exercise 1.6 List all subsets of the set {A,B,C}. Which of them are proper?

Exercise 1.7 True or false?

(a) empty set is a subset of itself

(b) set of odd counting numbers is infinite

(c) intersection of two infinite sets can be finite

(d) union of two infinite sets can be finite
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1.7.3 Operations with sets

Exercise 1.8 A = {1,2,3,4}, B = {4,5,6,7}, and C = {1,2,7,8}. List elements of the sets

(a) A∪B (b) A∩B (c) (A∪B)∩C (d) A∪ (B∩C)

Exercise 1.9 A = {a,b,c,d}, B = {b,c}, and C = {e}. List elements of the sets

(a) A∪B∪C

(b) A∩B

(c) A−C

(d) A−B

(e) B−A

Exercise 1.10 X = {1,2,3}, Y = {3,4,5}, and Z = {4,5,1}. List elements of the sets

(a) X ∪Y

(b) X ∩Y

(c) X ∪Z

(d) X ∩Z

(e) Y ∪Z

(f) Y ∩Z

Exercise 1.11 A = {1,2,3} and B = {2,3,4}. List elements of the sets

(a) A∪B (b) A∩B (c) A−B

Exercise 1.12 A = {1,3,5,7,9} and B = {2,4,6,8,10}. List elements of the sets

(a) A∪B (b) A∩B (c) A−B

Exercise 1.13 A = {1,2,3}, B = {2,3,4}, and C = {3,4,5}. List elements of the sets

(a) A∪B∪C (b) A∩B∩C (c) (B−A)∩C

1.7.4 Representation of operations with sets by Venn diagrams

Exercise 1.14 Draw Venn diagrams of the sets A and B. Shade the area that represents
the result of operations.
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(a) A∪B

(b) (A−B)∪B

(c) A∪ (B−A)

(d) A∪B

(e) A∩B

(f) (A−B)∪ (B−A)

(g) (A−B)∩ (B−A)

Exercise 1.15 Draw Venn diagrams for the sets A, B, and C. Shade the area that
represents the result of operations.

(a) (A∩B)∩C

(b) (A∪B)∩C

(c) (A∪C)∩B

(d) (A∪C)∩B

(e) (A∪C)− (B∩C)

(f) A∪ (C −B)

(g) (A∪B)− (B∩C)

(h) (A∪C)∩B

(i) A− (C ∩B)

1.7.5 Word problems solved by Venn diagrams

Exercise 1.16 All the students in a class play soccer or football. How many students
are there in the class if 18 students play soccer, 12 students play football, and 5 play
both soccer and football?

Exercise 1.17 In a class, 50 students visited Nebraska, 40 students visited Ohio, 10
students visited both Nebraska and Ohio. How many students visited Nebraska or
Ohio?

Exercise 1.18 At a breakfast buffet, 117 guests chose coffee, 133 guests chose juice,
and 27 guests chose both coffee and juice. If each person choses at least one of these
beverages, how many people visited the buffet?

Exercise 1.19

(a) Find |S ∪ T | if |S | = 10, |T | = 8, and |S ∩ T | = 2

(b) Find |S ∪ T | if |S | = 15, |T | = 6, and |S ∩ T | = 5



Chapter 1. SETS 27

(c) Find |S ∩ T | if |S | = 18, |T | = 7, and |S ∪ T | = 23

(d) Find |S ∩ T | if |S | = 10, |T | = 9, and |S ∪ T | = 17

Exercise 1.20 In a science classroom, 20 students have at least one brother, 10 stu-
dents have at least one sister, 5 students have both at least one brother and at least one
sister, and 10 students do not have any siblings at all. How many students are in the
classroom?

Exercise 1.21 |A| = 8 and |A∪B| = 8. Is it true that B ⊂ A? Explain.

Exercise 1.22 |A| = 10 and |A∪B| = 10. What can you say about B−A?

Exercise 1.23 Students were offered two selective courses: theater and ceramics. The
council made four lists: students who selected only theater, students who selected
exactly one course from these two, students who selected at least one course from
these two, and students who selected both courses. Which of the lists is the longest?

Exercise 1.24 Create a problem that can be solved by the diagram

Exercise 1.25 Anita drew a diagram representing the sets of animals, animals with
long tails, mammals, and cats. Which of the following pictures is Anita’s diagram?

Exercise 1.26 Represent the following shaded regions as the results of applying the
operations ∩, ∪, and − to the sets A, B, and C.
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Exercise 1.27

(a) Recall the definitions of geometric shapes: parallelogram, rhombus, rectangle,
square. Draw Venn diagrams representing inclusions of sets of these types of
quadrilaterals.

(b) On a piece of paper, Joseph drew 19 rectangles, 15 rhombuses, and 7 squares.
How many parallelograms did Joseph draw?



2. CULTURE OF CALCULATIONS

Counting numbers.

2.1 Important Reasons to Review Calculation Methods

This may be one of the most important chapters of this course. We will solve many basic
arithmetic exercises very similar to the ones that we used to do in school. You may wonder
why we should go over all of these things again. The answer is that these basic exercises will
put our discussion into the light of the culture of mathematics.

Basic exercises of this and further chapters have several objectives.

• We bring our computational skills to a higher, more professional level.

• We focus not only on answers, but also on elegant and efficient solutions.

• We discuss the reasons for performing some calculations in a certain way.

• We develop a stronger sense and intuition of mathematics.

• We learn about “personalities” of numbers and how to become better “friends” with
them.

29
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• Maybe, we will be able to get rid of some ineffective habits in calculations.

• Finally, with our new professional level we become true ambassadors of mathematical
culture for future generations.

2.2 About Calculators

As in many math courses, in this chapter we specifically ask you to avoid the use of calculators.

Question Why do you think students are asked to work without calculators in many
math classes?

Possible answer. Here is our version of an answer, you may certainly have a different
opinion.

No doubt, calculators are very useful for tedious tasks. Yet, many easy problems can be
(and in most cases should be) solved without the aid of technology, and here are some argu-
ments for that. Solving even the most basic math problem gives more than just a review of
arithmetic operations. It is even more than obvious training in logic and analytical thinking.

• Every math calculation is an exercise in planning, setting the key elements, analyzing
the results, controlling possible mistakes.

• Working without a calculator fosters our self-confidence. We gain true independence
from technology. We continue to believe in ourselves and our skills. It is crucial for
solving advanced problems.

• Many teachers admit that very often difficulties in STEM courses are due not to the
complexity of the new material, but to poor foundation in basic arithmetic skills.

• As we benefit from physical exercises (even though riding a car is easier), we benefit
from mental activities unaided by technology: every calculation without a calculator
is a step of intellectual self-improvement.

• It is not a secret that good counting skills have an impact on the quality of our daily
life. Unnoticeably for ourselves, we quickly and confidently make small household
calculations in our minds, often gaining benefits of a value while shopping, making a
budget, and in professional activities.

Let us keep these arguments in mind and work on the exercises of this chapter without a
calculator.

2.3 Incorrect Usage of Equal Sign

First, we would like to discuss not how to solve problems, but how to write solutions.
Consider the following problem and its “solution.”

Example 2.1 Find the sum of the first six consecutive counting numbers.
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“Solution.” To find the sum of the first six consecutive numbers 1,2,3,4,5,6, we add

1 + 2 = 3 + 3 = 6 + 4 = 10 + 5 = 15 + 6 = 21

Answer: 21.

Comments on the “solution.” The idea of the solution is correct, and the answer is
correct. Yet, the solution itself is written improperly: it contains wrong statements which
read as false equalities

1 + 2 = 3 = (!)6 = 3 + 3

3 + 3 = 6 = (!)10 = 6 + 4

6 + 4 = 10 = (!)15 = 10 + 5

10 + 5 = 15 = (!)21 = 15 + 6

Since each part of the equality has a different value, the whole argument looses its validity.
This is an example of incorrect usage of the equal sign, which is, unfortunately, widespread in
papers of students of all ages, in school, and at a college level.

Probably, this sloppiness comes from a desire to save time and effort. However, such
“shortcuts” should be avoided since incorrectly placed equal signs produce a lot of confu-
sion with serious consequences for students. Example 2.1 is very simple, and we have had
no difficulties in understanding the steps, even though they were not connected properly,
but, in more complicated situations, a carelessly placed equal sign may mess up the whole
argument. Not only the reader (for example, a grader of the homework) would get confused,
but the author of the solution would risk getting lost in their own invalid statements and
make other mistakes.

Question If the solution of Example 2.1 is not written properly, what would be a correct
way to write it?

Answer We can suggest two standard correct ways to write down solutions of this kind.

Solution 1. To find the sum of the first six consecutive numbers 1, 2, 3, 4, 5, 6, we add

1 + 2 = 3

3 + 3 = 6

6 + 4 = 10

10 + 5 = 15

15 + 6 = 21

Answer: 21.

In Solution 1, we write each step separately. Note that each line is a correct statement.
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Solution 2. To find the sum of the first six consecutive numbers 1, 2, 3, 4, 5, 6, we add

1 + 2 + 3 + 4 + 5 + 6 = 3 + 3 + 4 + 5 + 6 = 6 + 4 + 5 + 6 = 10 + 5 + 6 = 15 + 6 = 21

Answer: 21.

In Solution 2, we write all arguments and intermediate steps in one line, but we are
careful to include all necessary information at each step to keep equalities true.

2.4 Parentheses and Imposed Order

Example 2.2 One student wrote

50− 30− 20 = 40

and another student wrote

50− 30− 20 = 0.

Who has a correct answer? What could be a reason behind the mistake of the other
student?

Solution It is clear that the second student has the correct answer to the problem. We
may guess that the first student wanted to do the calculation in a different order, but forgot
to put parentheses to indicate the change of the order of operations:

50− (30− 20) = 40

Let us look at more examples of calculations where the order is changed with the help of
parentheses.

Example 2.3 Compute 100− 2× 30− 20.

Solution 100− 2× 30− 20 = 100− 60− 20 = 20.

Example 2.4 Put the parentheses in the statements to make them correct equalities:

(a) 100− 2× 30− 20 = 80 (b) 100− 2× 30− 20 = 980

Solution

(a) 100− 2× (30− 20) = 80 (b) (100− 2)× (30− 20) = 980

We discussed the significance of proper placement of the equal sign and parentheses.
More generally, formulas in mathematics are like sentences in a language: symbols and their
placement are important for the meaning of the statement. We need to keep this in mind
when we explain our solutions to others and teach our students these elements of mathe-
matical culture.
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2.5 Some Techniques for Better Calculations

We decided to work on easy problems without a calculator. Let us review some standard
techniques that will broaden the collection of problems that we can call easy.

2.5.1 Regrouping of terms

Example 2.5 Compute 703 + 64 + 7 without a calculator.

Solution If you can do this calculation in your head, that is really good! In general, this
should not be a difficult mental calculation for anyone, especially since this is an example
where regrouping of terms helps make everything very simple:

703 + 64 + 7 = 703 + 7︸  ︷︷  ︸
add first

+64 = 710 + 64 = 774

We used that 3 + 7 = 10, and 10 is a “nice” number that is easy to add to other numbers.
Sometimes, changing the order of terms leads to simpler and more elegant calculations. In
some sense, regrouping is based on a search for terms that are “good friends with each other”
meaning that, added together, they produce nice round numbers. Examples below illustrate
the method.

Example 2.6 Find the sum 22 + 46 + 18.

Solution We can group together 22 and 18 since they add up to a round number:

22 + 46 + 18 = 22 + 18︸  ︷︷  ︸
add first

+46 = 40 + 46 = 86

Example 2.7 Find the sum 134 + 408 + 166.

Solution We change the order to use that 134 and 166 add up nicely to a round number:

134 + 408 + 166 = 134 + 166︸     ︷︷     ︸
add first

+408 = 300 + 408 = 708

Example 2.8 Find the sum 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

Solution A trick for this sum is also based on regrouping of terms in pairs “small +
large,” where every pair produces the same sum:

1+2+3+4 + 5 + 6+7+8+9 = (1 + 9) + (2 + 8) + (3 + 7) + (4 + 6) + 5

= 10 + 10 + 10 + 10 + 5 = 4× 10 + 5 = 45
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Each pair adds up to 10, there are four pairs, and 5 in the middle is left without a pair, so we
add it separately.
Answer: 45.

Example 2.9 Find the sum 1 + 2 + 3 + 4 + · · ·+ 96 + 97 + 98 + 99 of all the numbers from
1 to 99.

Solution The same trick works here. Even in this huge sum of 99 numbers, we can
match them into pairs that add up to the same number:

1+2+3+4 + · · ·+ 96+97+98+99

The sum in each pair is 100, so we need to figure out how many pairs are there. For this
purpose let us look closer at the terms in the middle of this sum

. . .48+49+50+51+52 . . .

Note that there are 49 pairs that add up to 100 and 50 is left in the middle without a pair.
We conclude that

1 + 2 + 3 + 4 + · · ·+ 96 + 97 + 98 + 99 = 49× 100 + 50 = 4950

Answer: 4950.

Example 2.10 Find the sum 11 + 12 + 13 + 14 + 15 + 16 + 17 + 18 + 19.

Solution Using the same trick, we find

11+12+13+14+15+16+17+18+19 = 4× 30 + 15 = 135

Answer: 135.

Example 2.11 A teacher graded an exam and put the student’s scores in a table. Now,
the scores in the table must be added. Even with a calculator it is faster to insert for
each student 3 or 4 numbers than 10 numbers. In each example below, show how the
teacher can combine scores or use other techniques to make calculations more efficient.

(a)
Problem 1 2 3 4 5 6 7 8 9 10

Score 10 10 10 5 5 4 3 10 10 10

(b)
Problem 1 2 3 4 5 6 7 8 9 10

Score 10 10 10 10 8 10 10 8 8 10

Solution (a) For the scores of the first student we can do the following steps.

Step 1. Count how many the 10’s there are in the row. This gives 6× 10.

Step 2. Note that 5 + 5 = 10.
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Then the computation of the total score reduces to the calculation

6× 10 + (5 + 5) + 4 + 3 = 60 + 10 + 7 = 77

(b) The scores of the second student are short of the perfect scores two points in three
problems, which can be used for the calculation

10× 10− 2× 3 = 100− 6 = 94

Two and five are very good friends.

2.5.2 Two and Five Are Friends Forever

Example 2.12 Compute 24× 25 without a calculator.

Solution Recall that 25×4 = 100. It would be nice to use this fact since the multiplication
by 100 is easy. Indeed, we note that 24 contains 4 as a factor:

24 = 6× 4

From these two observations we conclude that

24× 25 = 6× 4× 25 = 6× 100 = 600.

Answer: 600.
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In Example 2.12, we used a rule that informally can be stated as follows.

Two and five are very good friends.

Indeed, recall that

2× 5 = 10

22 × 52 = 4× 25 = 100

23 × 53 = 8× 125 = 1000

. . . . . . . . . . . . . . . . . .

When multiplying numbers, look for copies of 2 and 5 hidden in the factors that could
be matched to create easy factors 10, 100, 1000, . . . .

Examples below illustrate how to use this advice.

Example 2.13 Compute 4× 17× 5× 5 without a calculator.

Solution We match two copies of 5 with two copies of 2 “hidden” in 4 = 2 × 2 to solve
this problem easily:

4× 17× 5× 5 = 2 × 2 × 17 × 5 × 5 = 10× 17× 10 = 1700.

Example 2.14 Compute 32× 125 without a calculator.

Solution This example illustrates that it is useful to recognize powers of 2 and 5. We note
that 32 = 25 and 125 = 53, which helps us to make the very simple calculation

32× 25 = 2 × 2 × 2 × 2 × 2 × 5 × 5 × 5 = 2× 2× 10× 10× 10 = 4000.

Example 2.15 Compute without a calculator:

(a) 8× 25 (b) 28× 25 (c) 13× 25× 2× 6

Solution

(a) 8× 25 = 2× 4× 25 = 2× 100 = 200
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(b) 28× 25 = 7× 4× 25 = 7× 100 = 700

(c) 13× 25× 2× 6 = 13× 25× 2× 2× 3 = 13× 100× 3 = 3900

2.5.3 Take a Penny, Leave a Penny method for addition

Example 2.16 What is the value of 398 + 26?

Solution We can use that one of the terms is very close to a nice round number. Observe
that 398 is almost the nice round number 400. In particular, it would be easy to add

400 + 26 = 426

We can use this observation to solve the initial problem

398 + 26 = (400− 2) + 26 = (400 + 26)− 2 = 426− 2 = 424

Example 2.17 What is the value of 300− 78?

Solution We use the same trick, but in the opposite direction. The straightforward
subtraction of 78 from the round number 300 forces us to borrow units, which is not very
convenient. At the same time, it is easy to calculate

298− 78 = 220

We use this observation to simplify the calculation

300− 78 = (298 + 2)− 78 = (298− 78) + 2 = 220 + 2 = 222

Example 2.18 What is the value of 198 + 234?

Solution Observe that 198 = 200− 2. Then

198 + 234 = (200− 2) + 234 = (200 + 234)− 2 = 434− 2 = 432

2.5.4 Take a Penny, Leave a Penny method for multiplication

Similar ideas may be applied to multiplication problems.

Example 2.19 Compute 25× 39 without a calculator.

Solution Using that 39 is almost 40, we get

25× 39 = 25× (40− 1) = 25× 40− 25× 1 = 25× 4× 10− 25 = 1000− 25 = 975
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Example 2.20 Compute 35× 101 without a calculator.

Solution Note that 101 = 100 + 1, so

35× 101 = 35× (100 + 1) = 35× 100 + 35× 1 = 3500 + 35 = 3535

2.6 Distinctiveness of Numbers

We have discussed several methods that help us simplify common calculations. We make a
couple of more general remarks.

• The methods above are based on the idea of reducing the required calculation to round
numbers since the addition and multiplication of round numbers is not that difficult.

• While there are many tricks for faster computations, the key is not in memorizing
them, but in establishing good intuition about numbers. Many people think that num-
bers are faceless digital abstractions, but this is absolutely not the case! Numbers,
like people, have characters. Hopefully, this course helps us to become better friends
with many useful numbers. Such an informal attitude with a personal touch towards
numbers improves calculations in the same way as good knowledge of individual char-
acteristics and capabilities of team members leads to efficient teamwork.

2.7 Exercises

A calculator should not be used in any exercise of this section.

2.7.1 Regrouping of terms

Exercise 2.1 Regroup the terms to simplify calculations. Compute the result.

(a) 505 + 19 + 45

(b) 208 + 17 + 22

(c) 7 + 456 + 93

(d) 213 + 32 + 68

(e) 22 + 205 + 595 + 78

(f) 437 + 39 + 13

(g) 122 + 73 + 58

(h) 353 + 22 + 7

(i) 133 + 101− 13 + 149

(j) 15 + 327 + 25

(k) 256 + 1037 + 44

(l) 46 + 22 + 18

(m) 664 + 13 + 87

(n) 119 + 56 + 11

(o) 765 + 208 + 135

(p) 143 + 96 + 57

(q) 37 + 25 + 43

(r) 78− 15 + 89 + 22

(s) 456 + 32 + 68
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Exercise 2.2 Regroup the terms to find the sum in a simple way.

(a) 2 + 7 + 5 + 27 + 14 + 18 + 15 + 6

(b) 111 + 112 + 113 + 114 + 115 + 116 + 117 + 118 + 119

Exercise 2.3 A teacher graded an exam and put the student’s scores in a table. Now
the scores in the table must be added. In each example below, show how the teacher
can combine scores or use other techniques to make calculations more efficient.

(a)
Problem 1 2 3 4 5 6 7 8 9 10

Score 10 5 5 5 5 7 3 10 10 10

(b)
Problem 1 2 3 4 5 6 7 8 9 10

Score 10 10 10 10 8 9 10 10 9 10

(c)
Problem 1 2 3 4 5 6 7 8 9 10

Score 10 10 10 10 7 6 3 0 4 10

2.7.2 Take a Penny, Leave a Penny

Exercise 2.4 Show how to add or subtract 1 or 2 to make calculations simpler.

(a) 1819 + 1153

(b) 348 + 19997

(c) 999 + 2036

(d) 1201− 166

(e) 2702− 138

(f) 56− 29

(g) 542 + 79

(h) 359 + 596

(i) 1301− 168

(j) 5,000− 997

Exercise 2.5 Show how to add or subtract 1 or 2 to make calculations simpler.

(a) 23× 21

(b) 39× 102

(c) 15× 9

(d) 13× 199

(e) 17× 98

(f) 14× 199

(g) 14× 19

(h) 25× 38

(i) 35× 98

(j) 27× 999
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2.7.3 Two and Five Are Friends Forever

Exercise 2.6 Match powers of 2 and 5 to create powers of 10 to simplify calculations.

(a) 5× 15× 4

(b) 24× 25

(c) 16× 25

(d) 64× 25

(e) 5× 22

(f) 25× 180× 4

(g) 18× 12× 125

(h) 36× 25

(i) 5× 125× 64

(j) 25× 25× 25× 4× 4× 4× 4

(k) 16× 25× 7

(l) 2× 4× 25× 3× 2

(m) 8× 7× 25

(n) 84× 5

2.7.4 Parentheses and imposed order

Exercise 2.7 Calculate.

(a) 512− 15− 10

(b) 512− (15− 10)

(c) 512 + 15− 10

(d) 512 + (15− 10)

(e) 110− 2× (50− 30)

(f) (110− 2× 50)− 30

(g) (110− 2)× 50− 30

Exercise 2.8 Put the parentheses to make the following equalities correct statements:

(a) 200× 16 + 14 = 6000

(b) 70− 40− 20 = 50

(c) 50− 10 + 20 = 20

(d) 50− 20× 5− 1 = 120



3. ARITHMETIC OPERATIONS

Odd numbers.

3.1 Introduction

The arithmetic operations are the operations of addition +, subtraction −, multiplication ×,
and division ÷. The goal of this chapter is to discuss relations between the arithmetic oper-
ations and review their properties. We start with addition and will see that the introduction
of other arithmetic operations is in some sense implied by the invention of addition.

3.2 Addition

In most cases, scientific innovations are introduced to make our daily life easier, and the ad-
dition operation is not an exception. Probably, addition was one of the earliest mathematical
inventions of our civilization.

Imagine that you have two piles of stones with 8 stones in one pile and 9 in the other. If
you put all the stones in one pile, you do not need to recount stones one-by-one again since
you memorized from previous experience that 8 + 9 = 17. One can say that the basic addition

41
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consists of memorized results of counting. In other words, a long time ago we started using
addition to avoid the tedious task of recounting objects.

Moreover, this is probably how we invented counting numbers since all counting numbers can
be obtained by successive addition of one. Indeed, we can write the sequence

1

2 = 1 + 1

3 = 2 + 1

4 = 3 + 1

. . . . . . . . .

Every counting number will appear in this sequence.

3.3 The Number Zero

The set of whole numbers is the set consisting of all counting numbers and the number zero.

Question What is the number zero?

Answer While everyone knows what zero is, it is not easy to give a good mathematical
definition of this very special number. Many people would say that zero is just nothing,
but this does not explain the notion. The term nothing itself would need an explanation in
mathematics. (For example, is the empty set also nothing? What is the difference between
zero and the empty set?) It is convenient for us to introduce the number zero through its
special property in relation to the addition operation.

Zero is such a number that for any number a

0 + a = a+ 0 = a

One says that zero has the additive unit property.

3.4 Multiplication

After introducing addition, multiplication does not come as a completely new operation.
For counting numbers multiplication is nothing else but the repetitive addition of the same
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number. Indeed, the repetitive addition like

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5

is very long to write, difficult to read, and it is easy to loose a summand. The well-known
short notation was introduced for such expressions. For example, 5×14 is the short notation
for the operation of addition of 5 to itself 14 times. The meaning of multiplication is reflected
in the standard definition of this operation.

Let a and b be counting numbers. Then

a× b = a+ · · ·+ a︸    ︷︷    ︸
b times

Multiplication also has a special number with the unit property.

The number 1 has the multiplicative unit property: For any number a

a× 1 = 1× a = a

Note that zero also has a special multiplicative property.

The number 0 has the multiplicative property: For any number a

a× 0 = 0× a = 0

3.5 Subtraction

Subtraction is the “backwards” operation for addition.
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Example 3.1 There are 8 fish in a fish tank. Five fish are red, and the remaining ones
are green. How many green fish are in the fish tank?

Solution Of course, the answer is 3 green fish, and the argument is based on the logic
of addition: one has to add 3 to 5 to get 8 or

8− 5 = 3 because we know that 5 + 3 = 8

This is exactly the idea of the definition of subtraction.

Let a and b be two numbers. Then c = b−ameans that c is a number such that b = c+a.

At first glance, this definition looks obvious, but it is not the case. We introduce the new
symbol − and explain its meaning through the addition operation +.

For whole numbers b and a the value of b − a is not necessarily a whole number since we
can get a negative value if a > b. We discuss this issue in Section 3.8 and Chapter 10.

3.6 Division

Similarly to subtraction, division is the “backwards” operation for multiplication.

Let a and b be two numbers with a , 0. Then c = b ÷ a means that c is a number such
that b = c × a.

For whole numbers b and a , 0 the value of b ÷ a is not necessarily a whole number. We
discuss this issue in Section 3.8 and Chapter 10.

3.7 Properties of Operations

The arithmetic operations +, ×, −, and ÷ have properties that we use in every day math, even
though we rarely give them any thought.

3.7.1 Commutativity of addition and multiplication

Commutativity of addition and multiplication means that we can perform these operations
with any order of terms.

Commutativity of addition and multiplication: For any two numbers a and b

a+ b = b+ a

a× b = b × a
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This famous property significantly simplifies our daily life. Imagine that every time at
a grocery store, we would have to think whether we should pay first for milk and then for
bread or in the other way because the total will be different! Also we note that commutativity
is not a guaranteed property of operations in mathematics.

Example 3.2 Is it true that for any two counting numbers a and b

a÷ b = b ÷ a?

Solution This is certainly false. To show that the statement is false, it suffices to give
any example of two numbers that fails the statement. For example, take a = 20 and b = 10.
Then

20÷ 10 = 2 and 10÷ 20 =
1
2
, but 2 ,

1
2

This example shows that division is not a commutative operation.

When we want to prove that a statement is false, it is enough to give just one example of
a number that fails the statement. When we believe that a statement is true and want
to prove that it is true, one example is not enough. Rather, a more elaborate argument
covering all possible cases is necessary.

Example 3.3 Subtraction is not a commutative operation. For example,

5− 3 , 3− 5

Example 3.4 Professional folklore of mathematicians contains a famous informal ex-
ample of noncommutativity. If you put on socks first and then shoes, the result is not
the same as if you do this in the other order.

3.7.2 Associativity of addition and multiplication

Associativity of addition and multiplication: For any three numbers a, b, and c

(a+ b) + c = a+ (b+ c)

(a× b)× c = a× (b × c)
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Example 3.5 A student formulated “associativity for division” as

(a÷ b)÷ c = a÷ (b ÷ c) for any counting numbers a, b, and c

Show that this statement is not true in general.

Solution Such “associativity” does not hold for all counting numbers. For example, take
a = 1, b = 2, and c = 4. Then

(a÷ b)÷ c = (1÷ 2)÷ 4 =
1
2
÷ 4 =

1
8

a÷ (b ÷ c) = 1÷ (2÷ 4) = 1÷ 1
2

= 2

and, certainly,
1
8
, 2.

Remark In Example 3.5, we did some calculations with fractions. These kinds of calcu-
lations are reviewed in Chapter 11.

3.7.3 Distributivity

Distributivity properties describe interaction of the operations of multiplication (or division)
with the operations of addition (or subtraction).

Distributivity: For any three numbers a, b, and c

a× (b+ c) = a× b+ a× c
a× (b − c) = a× b − a× c
(b+ c)÷ a = b ÷ a+ c ÷ a (a , 0)

(b − c)÷ a = b ÷ a− c ÷ a (a , 0)

Example 3.6 We stated without proof that for any three counting numbers a, b, and c
the distributivity property for division holds

(b+ c)÷ a = b ÷ a+ c ÷ a

Is it true that for counting numbers a, b, and c

a÷ (b+ c) = a÷ b+ a÷ c?

Solution No, this statement is wrong. For example, take a = 1, b = 1, and c = 1. Then

a÷ (b+ c) = 1÷ (1 + 1) =
1
2

a÷ b+ a÷ c =
1
1

+
1
1

= 1 + 1 = 2

and
1
2
, 2. Thus, a÷ (b+ c) , a÷ b+ a÷ c.



Chapter 3. ARITHMETIC OPERATIONS 47

3.7.4 Summary of properties of the arithmetic operations

Let us summarize the properties discussed above.

Commutativity of addition and multiplication: For any two numbers a and b

a+ b = b+ a

a× b = b × a

Associativity of addition and multiplication: For any three numbers a, b, and c

(a+ b) + c = a+ (b+ c)

(a× b)× c = a× (b × c)

Distributivity: For any three numbers a, b, and c

a× (b+ c) = a× b+ a× c
a× (b − c) = a× b − a× c
(b+ c)÷ a = b ÷ a+ c ÷ a (a , 0)

(b − c)÷ a = b ÷ a− c ÷ a (a , 0)

Additive and multiplicative units
The number 0 is a unique whole number that has the additive unit property: For any
whole number a

a+ 0 = 0 + a = a

The number 1 is a unique whole number that has the multiplicative unit property: For
any whole number a

a× 1 = 1× a = a

Multiplicative property of zero: For any whole number a

a× 0 = 0× a = 0

Example 3.7 What properties of the arithmetic operations are illustrated by the fol-
lowing examples.

(a) 2 + 7 + 8 = 2 + 8 + 7

(b) 10× (100− 1) = 10× 100− 10× 1

(c) 125× 3× 8 = 125× 8× 3

(d) 134 + 0 = 0 + 134

(e) 5 + 0 = 5

(f) 1 + 0 = 1

(g) 1 + 0 = 0 + 1

(h) 0× (5 + 7) = 0

(i) 5× 1 = 5

(j) 5× (3 + 2) = (3 + 2)× 5



48 3.8. Closure Property

Solution

(a) We change the order of two terms and use the commutativity of addition:

2 + 7 + 8 = 2 + 8 + 7

(b) 10× (100− 1) = 10× 100− 10× 1 is an example of distributivity.

(c) We use the commutativity of multiplication.

125 × 3 × 8 = 125 × 8 × 3

(d) We change the order of 0 and 134:

134 + 0 = 0 + 134

This is an example of the commutativity of addition (not the additive unit property of
zero!)

(e) 5 + 0 = 5 is an example of the additive unit property of zero.

(f) 1 + 0 = 1 is an example of the additive unit property of zero.

(g) We change the order of 0 and 1:

1 + 0 = 0 + 1

This is an example of the commutativity of addition.

(h) 0× (5 + 7) = 0 illustrates the multiplicative property of zero.

(i) 5× 1 = 5 illustrates the multiplicative unit property of one.

(j) 5× (3 + 2) = (3 + 2)× 5 is based on the commutativity of multiplication.

3.8 Closure Property

Question What arithmetic operations on whole numbers always produce a whole num-
ber as their result?

Answer The result of the addition or multiplication of any two whole numbers is always
a whole number. We can also subtract and divide whole numbers, but, in many cases, the
result is not a whole number, for example, 3 − 5 = −2 and 2/3 are not whole numbers. We
say that the set of whole numbers is closed under the operation of addition or multiplication
and is not closed under the operations of subtraction and division. In other words, addition
and multiplication do not take us outside the “world of whole numbers,” but for subtraction
and division this world is too small. When the world becomes too small, this leads to intro-
duction of new numbers (negative integers and fractions). These expansions are discussed
in Chapter 10.

The general notion of the closure of a set under an operation is formulated as follows.
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A set S of numbers is closed under addition if for any two numbers in the set S their
sum again belongs to S.

if a,b ∈ S, then a+ b ∈ S.

The closure of a set under other operations is introduced in a similar way.

Example 3.8 Determine whether the following sets are closed under the operations +
and ×.

(a) even numbers {0,2,4, . . . }

(b) odd numbers {1,3,5, . . . }

(c) {2,5,11}

(d) {0}

(e) {0,1}

(f) {0,2}

(g) {0,1,−1}

Solution

(a) The set of even numbers {0,2,4, . . . } is closed under both operations since

even + even = even

even × even = even

(b) The set of odd numbers {1,3,5, . . . } is not closed under addition. For example, 1 + 3 = 4
and, more generally,

odd + odd = even

The set of odd numbers is closed under multiplication since

odd × odd = odd

(c) The set {2,5,11} is not closed under addition and is not closed under multiplication.
For example, we can take 2+5 = 7 and note that 7 < {2,5,11}. Similarly, 5×11 = 55 and
55 < {2,5,11}.

(d) The set {0} is closed under both addition and multiplication since

0 + 0 = 0, 0× 0 = 0

(e) The set {0,1} is not closed under addition, but is closed under multiplication. For the
first statement we note that 1 + 1 = 2 and 2 < {0,1}. To prove the second statement, we
can make the table of multiplication for all the three elements of this set to check that
the result of multiplication always belongs to this set:

0× 0 = 0, 1× 0 = 0× 1 = 0, 1× 1 = 1

(f) The set {0,2} is not closed under addition and is not closed under multiplication since
we can take 2 + 2 = 4 and 2× 2 = 4, but 4 < {0,2}.
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(g) The set {0,1,−1} is not closed under addition since 1+1 = 2, but 2 < {0,1−1}. It is closed
under multiplication, which again can be checked by using the multiplication table

× | −1 0 1
−1 | 1 0 −1
0 | 0 0 0
1 | −1 0 1

We see that all the results of multiplication belong to the set {0,1,−1}.

3.9 Why Is Division by Zero Not Allowed?

We all know that it is forbidden to divide by zero, but do you know why? More precisely, why

expressions like
a
0

(for example,
15
0

) are not well defined? This is not a prohibition voluntarily

invented by professors or math teachers, but a law dictated by nature. Mathematics itself
cannot stand the division by zero, and an attempt to validate such an operation unavoidably
leads to a logical contradiction.

Let us try to understand the obstruction. Assume for a moment that we can find a well

defined number c that equals
a
0

for a given counting number a. We see shortly that this leads

us to a contradiction. As a result, we have to admit that our assumption is not valid, that is,

there is no a well defined number
a
0

.

For example, take a = 5. Recall that, by the definition of the division operation, if c equals
5
0

, then

c × 0 = 5

By the multiplicative property of zero, the left-hand side can be simplified as c × 0 = 0, and
we get the contradictory impossible equality

0=5 !

This means that our assumption is wrong and it is not possible to find a number c that would

be equal to
5
0

.

Remark For the sake of simplicity of exposition, we presented an argument for a = 5,

but exactly the same argument works for any a , 0. For a = 0 the expression
0
0

is not a well

defined number because if c =
0
0

, then c × 0 = 0, and this is true for any number c, not just

one. So, there is ambiguity.

For any number a the expression
a
0

cannot be well defined.
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3.10 Properties of Operations with Sets

Recall that, in Section 1.4, we introduced the operations A∪B, A∩B, and A−B with sets A
and B. It is clear that they have some similarities with the arithmetic operations on numbers.
Using Venn diagrams, one can investigate properties of these operations with sets to discover
the following.

• Commutativity and associativity hold for the union and intersection.

A∪B = B∪A A∩B = B∩A

A∪ (B∪C) = (A∪B)∪C A∩ (B∩C) = (A∩B)∩C

• Commutativity and associativity do not hold for the difference operation.

A−B , B−A

A− (B−C) , (A−B)−C



52 3.11. Exercises

Example 3.9 Do the following analogs of distributivity hold?

(a) A∩ (B∪C) = (A∩B)∪ (A∩C)

(b) A∪ (B∩C) = (A∪B)∩ (A∪C)

Solution We represent each side of the equality by a Venn diagram and see that they
coincide in both cases, which illustrates that both statements (a) and (b) are true.

A∩ (B∪C) = (A∩B)∪ (A∩C) A∪ (B∩C) = (A∪B)∩ (A∪C)

3.11 Exercises

3.11.1 Properties of the arithmetic operations

Exercise 3.1 What properties of the arithmetic operations are illustrated by the fol-
lowing examples.

(a) 1279 + 3847 is a whole number

(b) 7 + 5 = 5 + 7

(c) 53 + 47 = 50 + 50

(d) 1 + 0 = 1

(e) 1 + 0 = 0 + 1

(f) 7 · (5− 4) = 7 · 5− 7 · 4

(g) (2 + 11) · 0 = 0

(h) 6 · (5 · 13) = (6 · 5) · 13

(i) (5 + 7) · 7 = 5 · 7 + 7 · 7

(j) 4 · 6 = 6 · 4

(k) 6 · (3 + 2) = (3 + 2) · 6

(l) 10 · (3 + 7) = 10 · 3 + 10 · 7

Exercise 3.2 Each of the following equalities illustrates one of the properties of addi-
tion. Substitute an appropriate number or a word for the question mark to complete
the statement. Identify the properties illustrated by the examples.

(a) 4 + ? = 4

(b) 3 + 8 = ? + 3

(c) (2 + 1) + 13 = 2 + ( ? + 13)

(d) (3 + 2) + 10 = ? + (3 + 2)

(e) (5 + 11) + 8 = (11 + ? ) + 8

(f) (11 + 120) is a ? number
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Exercise 3.3 Klaus claims that the following statements are correct, but he is wrong.
For each of the statements give an example that would illustrate that the statement is
wrong.

(a) If a and b are whole numbers, then a/b is also a whole number.

(b) a/b = b/a for any two nonzero whole numbers a and b.

(c) (a/b)/c = a/(b/c) for any three nonzero whole numbers a, b, and c.

(d) a/(b+ c) = a/b+ a/c for any three nonzero whole numbers a, b, and c.

3.11.2 Closure of sets of numbers under arithmetic operations

Exercise 3.4 Which of the following sets are closed under (A) addition (B) multipli-
cation? If a set is closed, give an argument. If not, give an example.

(a) The set {0,10,20,30, . . . } of multiples of 10.

(b) The set {0,3,6,9, . . . } of multiples of 3.

(c) The set {0,2,4,6, . . . } of even numbers.

(d) The set {1,3,5,7, . . . } of odd numbers.

(e) The set {1}.

(f) The set {0,1,2}.

(g) The set {0}.

(h) The set {2,5,8,11,14, . . . } that contains every third number and starts from 2.

(i) The set of whole numbers less than 19.

(j) The set of whole numbers greater than 19.

(k) The set of whole numbers with {3} removed {0,1,2, 4,5,6,7,8,9, , . . . }.

(l) The set of whole numbers with {6} removed {0,1,2,3,4,5, 7,8,9, . . . }.

(m) The set {2,4}.

(n) The set {0,1}.

(o) The set {0,3}.
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3.11.3 Definition of the number zero

Exercise 3.5 We asked a group of elementary school students to define zero. Here
are their answers. Which of them are logically wrong? Which of them are ambiguous?
What properties of zero are mentioned? Which of them are very close to our definition
of zero?

(a) A number that is worth nothing.

(b) An oval that means nothing.

(c) Zero is nothing in a sentence. I have 0 mugs. A closed figure that is all round.

(d) Nothing, a number that indicates nothing.

(e) A number that represents nothing.

(f) A round number that is worth nothing.

(g) Nothing.

(h) Nothing as a number. It can be used as a space between digits.

(i) A number that contributes nothing when added to a number.

(j) So, when you add zero to a number, the solution is always that number.

(k) When you divide a number with zero,... well the solution is ... ZERO.

(l) The number that you get when you subtract a number from itself.

(m) It is what you get when you subtract any number from itself, like one minus one.

(n) Nothing, a number between negative and positive.
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Division with remainder.

4.1 Division That Stays Within the Set of Whole Numbers

As we discussed earlier, the set of whole numbers is not closed under division. For example,

5 ÷ 3 =
5
3

is not a whole number. At the same time, we know another operation which is

very close to division and does not take us outside the set of whole numbers: division with
remainder.

Example 4.1 15 can be divided by 7 with the remainder 1:

15 = 2× 7 + 1

More generally, let a and b be two counting numbers with a ≥ b > 0. Then there exist
whole numbers q and r such that b > r ≥ 0 and

a = qb+ r

We call q the quotient, b the divisor, and r the remainder. We say that a divided by b gives the
quotient q with the remainder r. The commonly used notation for division with remainder
looks like

a÷ b = qRr

Example 4.2 Divide 49 by 8 with remainder.

55
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Solution Since 49 = 6× 8 + 1, we get 49÷ 8 = 6R1.

Example 4.3 Divide with remainder

(a) 58 by 7 (b) 118 by 25

Solution

(a) Since 58 = 7× 8 + 2, we get 58÷ 7 = 8R2.

(b) Since 118 = 25× 4 + 18, we get 118÷ 25 = 4R18.

Remark The remainder is always less than the divisor, r < b.

For large values of a division with remainder is performed through long division or by
using a calculator. It is acceptable in our course to use a calculator in the cases where cal-
culations seem to be too lengthy. Sometimes, relations between numbers allow us to divide
with remainder in a relatively easy way without a calculator or long division.

Example 4.4 Divide 569 by 57 with remainder.

Solution We can avoid long division or usage of a calculator if we find an “obvious”
multiple of 57 close to 569. Note that 569 is almost 570 and 570 = 57× 10. We can use this
observation as follows:

569 = 570− 1 = 10× 57− 1

Note that the remainder cannot be negative, r , −1, so we adjust the last expression as

569 = 10× 57− 1 = (9 + 1)× 57− 1 = 9× 57 + (57− 1) = 9× 57 + 56

Answer: 569÷ 57 = 9R56.

Example 4.5 Divide 278 by 25 with remainder.

Solution We find an “obvious” multiple of 25 close to 278, for example, 250, and then
adjust it:

278 = 250 + 28 = 250 + 25 + 3 = 25× 10 + 25 + 3 = 25× (10 + 1) + 3 = 25× 11 + 3

This calculation gives 278÷ 25 = 11R3.

Example 4.6 True or false?

(a) The remainder of division of 15 by 3 is zero.

(b) Since 63 = 5× 10 + 13, we get 63÷ 10 = 5R13.
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(c) Since 64 = 5× 13− 1, we get 64÷ 5 = 13R(−1).

Solution

(a) Yes, this is true: 15 = 5× 3 + 0 and 15÷ 3 = 5R0.

(b) No, this is false since the remainder cannot be larger than the divisor and 13 > 10. The
correct statement is 63÷ 10 = 6R3.

(c) No, this false since the remainder is always a nonnegative number: r ≥ 0. The correct
statement is 64÷ 5 = 12R4.

In Chapter 7, we use the division by powers of 2, 3, . . . with remainder. The next exercise
prepares us for this work. Recall the values of the first few powers of 2:

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, . . .

Example 4.7 Complete division with remainder (substitute an appropriate quotient
for the blue question mark and an appropriate remainder for the green question mark).

(a) 31 = ?× 16 + ?

(b) 15 = ?× 8 + ?

(c) 7 = ?× 4 + ?

(d) 3 = ?× 2 + ?

(e) 1 = ?× 1 + ?

Solution

(a) 31 = 1× 16 + 15

(b) 15 = 1× 8 + 7

(c) 7 = 1× 4 + 3

(d) 3 = 1× 2 + 1

(e) 1 = 1× 1 + 0

Remark In Chapter 7, we learn that this particular calculation implies that the number
31 is represented in the binary system as

31 = 11111two

This fact will be explained in detail later. Now, we consider the example.

Example 4.8 What are the remainders of the division of the number

a = 1× 2× 3× 4× 5× 6 + 1

by 3, 5, 2, 10, 12?

Solution All these questions have the same answer: the remainder is 1. Indeed, we see
that a is a multiple of 3 plus 1.

a = (1× 2× 4× 5× 6)× 3 + 1, 3 > 1 > 0
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So, 1 is the remainder of the division of a by 3. Similarly,

a = (1× 2× 3× 4× 6)× 5 + 1, 5 > 1 > 0

a = (1× 3× 4× 5× 6)× 2 + 1, 2 > 1 > 0

a = (1× 3× 4× 6)× 10 + 1, 10 > 1 > 0

a = (1× 3× 4× 5)× 12 + 1, 12 > 1 >

In each case, the remainder is 1.

4.2 Exercises

Exercise 4.1 Complete division with remainder.

(a) 12 by 5

(b) 128 by 13

(c) 2137 by 100

(d) 10000 by 9

(e) 128 by 3

(f) 333333 by 33

(g) 49 by 8

(h) 73 by 8

(i) 58 by 7

(j) 400 by 57

(k) 487 by 17

(l) 456 by 6

(m) 118 by 23

(n) 683 by 5

(o) 5 by 638

(p) (15 ·A+ 2) by 3

(q) (5 · 7 ·B+ 2) by 5

Exercise 4.2 Find the remainder of the division of n = 1 · 2 · 3 · 4 · 5 · 6 + 1 by 20.

Exercise 4.3 Without calculating, determine whether the sum 1231 + 36785 + 513 is
even or odd.
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The powers of two.

5.1 Definition of Powers of Numbers

Many students lack confidence in problems that involve powers of numbers. The unusual
notation ak and properties of exponential expressions may look rather puzzling. In reality,
we should not be afraid of exponents since it is not a new operation, but the abbreviated
notation for repetitive multiplication. Indeed, recall that we already saw the abbreviated no-
tation × for the repetitive addition

5× 6 = 5 + 5 + 5 + 5 + 5 + 5

Similarly, we use the exponential notation for the repetitive multiplication

56 = 5× 5× 5× 5× 5× 5

59
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Let k be a counting number, and let a be a whole number. Then ak stands for the
repetitive multiplication of a by itself k times

ak = a× · · · × a︸    ︷︷    ︸
k times

The number k is called the exponent or power of a. The number a is called the base.
The expression ak is read “a to the power k.” For any a , 0 we define

a0 = 1

Remark The expression 00 is not well defined (the assumption of the existence of such a
number leads to a contradiction).

5.2 Properties of Exponents

All properties of exponents follow from the definition and properties of multiplication.
Whenever you have doubts about a certain property of an exponential expression, write
it out using multiplication and check whether the situation becomes more transparent.

Example 5.1 Simplify 53 × 54 and write the result in the form 5k .

Solution It is easy to get confused here: should we multiply 3×4 or add 3 + 4 to get the
value of k? An answer becomes obvious if we go back to the definition of exponents:

53 × 54 = 5× 5× 5︸   ︷︷   ︸
3 times

×5× 5× 5× 5︸        ︷︷        ︸
4 times

= 5× 5× 5× 5× 5× 5× 5︸                      ︷︷                      ︸
7 times

Thus,
53 × 54 = 53+4 = 57

For any whole number a and any two counting numbers m and n

aman = am+n

This is proved by exactly the same argument:

am × an = a× · · · × a︸    ︷︷    ︸
m times

×a× · · · × a︸    ︷︷    ︸
n times

= am+n

Example 5.2 Simplify 58 ÷ 52 and write the result in the form 5k .
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Solution We again go back to the definition. Then the answer becomes obvious:

58 ÷ 52 =
5× 5× 5× 5× 5× 5×���5× 5

���5× 5
= 5× 5× 5× 5× 5× 5︸                 ︷︷                 ︸

6 times

. = 56

Hence
58 ÷ 52 = 58−2 = 56

For any counting number a and any two counting numbers m and n

am ÷ an = am−n

Further, let a , 0 and m = 0 in the formula am ÷ an = am−n:

a0 ÷ an = a−n

Since a0 = 1, the left-hand side simplifies to a0 ÷ an = 1÷ an =
1
an

, and we get another useful

relation.

For any counting number a and a counting number n

1
an

= a−n

This formula helps us convert fractions to exponents.

Example 5.3 Simplify 5−3 × 1
52 and write the result in the form 5k .

Solution
5−3 × 1

52 = 5−3 × 5−2 = 5−3−2 = 5−5

Example 5.4 Simplify (53)4 and write the result in the form 5k .

Solution
(53)4 = 53×4 = 512

Why do we multiply exponents in this case? Again, this becomes clear when we write every-
thing out using multiplication:

(53)4 = 53 × 53 × 53 × 53︸              ︷︷              ︸
4 times

. = (5× 5× 5)× (5× 5× 5)× (5× 5× 5)× (5× 5× 5)︸                                                       ︷︷                                                       ︸
3× 4 times

= 512



62 5.2. Properties of Exponents

For any whole number a and any two counting numbers m and n

(am)n = am×n

By the same argument as in the example above, it is proved that

(am)n = am × · · · × am︸        ︷︷        ︸
n times

= (a× · · · × a)× · · · × (a× · · · × a)︸                              ︷︷                              ︸
m×n times

= amn

Example 5.5 Write 23 × 53 in the form ak .

Solution Three copies of 5 and three copies of 2 can be matched to make 3 copies of 10:

23 × 53 = 2 × 2 × 2 × 5 × 5 × 5 = 10× 10× 10 = 103.

This example illustrates the general rule.

For any two whole numbers a and b and any counting number m

am × bm = (a× b)m

Example 5.6 Substitute an appropriate value for the question mark.

(a) 65 = 3? × 2? (b) 8× 33 =?3 (c) 610 × 210 =?10

Solution

(a) 65 = (3× 2)5 = 35 × 25.

(b) Note that 8 = 23. Then 8× 33 = 23 × 33 = (2× 3)3 = 63.

(c) 610 × 210 = (6× 2)10 = 1210.

Example 5.7 True or false?

(a) 34 × 32 = 38?

(b) (32)3 = 36?

(c)
1

3−2 = 3−2?

(d) 37 ÷ 3−2 = 35?

Solution

(a) 34 × 32 = 34+2 = 36, false

(b) (32)3 = 32×3 = 36, true

(c)
1

3−2 = 3−(−2) = 32, false

(d) 37 ÷ 3−2 = 37−(−2) = 37+2 = 39, false
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5.3 Summary of Properties of Exponents

For any whole numbers a and b and any counting numbers n and m

am = a× · · · × a︸    ︷︷    ︸
m times

aman = am+n

am ÷ an = am−n (a , 0)

a−n =
1
an

(a , 0)

(am)n = amn

anbn = (ab)n

a0 = 1

5.4 More Examples of Problems with Exponents

Let us apply properties of exponents to solve these examples.

Example 5.8 Simplify 22 × 22 × 22 × 22 × 22 and write the result in the form 2k .

Solution 22 × 22 × 22 × 22 × 22 = 22+2+2+2+2 = 210.

Example 5.9 Simplify ((((22)2)2)2)2 and write the result the form 2k .

Solution ((((22)2)2)2)2 = 22×2×2×2×2 = 2(25) = 232.

Example 5.10 Simplify 22222
and write the result in the form 2k .

Solution We start from the top exponent of the expression. First, we use 22 = 4, then
24 = 16, and, finally, 216 = 65536.

22222
= 2224

= 2216
= 265536

Example 5.11 Simplify
252

54 .
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Solution Note that 25 = 52.

252

54 =
(52)2

54 =
54

54 = 1

Remark Usually, we try to avoid large numbers at intermediate steps. Rather than evalu-
ating 252 = 625, we prefer to express everything in powers of 5 since these are small numbers
that are easier to manipulate.

Example 5.12 Write 63 ÷ 6−7 × 611 in the form 6k .

Solution
63 ÷ 6−7 × 611 = 63 × 67 × 611 = 63+7+11 = 621

Example 5.13 Write in the form ak :

25 × 46

22 × 1
82

Solution We can express everything in powers of 2 since 4 = 22 and 8 = 23:

25 × (22)6

22 × 1
(23)2 =

25 × 212

22 × 26 =
217

28 = 217−8 = 29

Remark The answer 83 is also correct since 29 = (23)3 = 83.

Example 5.14 Write in the form ak .

(a) 25 × 82 (b) 320 × 220 (c) 2510 × 220 (d) 42 × 9× 25

Solution

(a) 25 × 82 = 25 × (23)2 = 25 × 26 = 211

(b) 320 × 220 = (3× 2)20 = 620

(c) 2510 × 220 = (52)10 × 220 = 520 × 220 = (5× 2)20 = 1020

(d) 42 × 9× 25 = 42 × 32 × 52 = (4× 3× 5)2 = 602

Example 5.15 Solve for x.

(a) (11x)4 = 1140 (b) 114 × 11x = 1140 (c) 114 × 3x = 334

Solution
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(a) (11x)4 = 114x = 1140, so 4x = 40 and x = 10

(b) 114 × 11x = 114+x = 1140, so 4 + x = 40 and x = 36

(c) 334 = 114 × 34, so x = 4

Example 5.16 Find 52 − 42 + 25 ÷ 23.

Solution
52 − 42 + 25 ÷ 23 = 25− 16 + 22 = 25− 16 + 4 = 13

Example 5.17 Find

4× 8− 62 × 4
23 × 32

Solution First, let us simplify the fraction

62 × 4
23 × 32 =

(2× 3)2 × 22

23 × 32 =
22 × 32 × 22

23 × 32 = 2

Note that we avoid producing large numbers at intermediate steps. We break the factors into
smaller ones and cancel as many as we can. Then the final step of calculation is

4× 8− 62 × 4
23 × 32 = 32− 2 = 30

Example 5.18 Simplify
2× 33

15− 2× 3

Solution The denominator is simplified as 15− 2× 3 = 15− 6 = 9. Then

2× 33

15− 2× 3
=

2× 33

9
=

2× 33

32 = 2× 3 = 6

5.5 Evaluation of Powers of Numbers

The ability to recognize powers of different numbers, for example,

25 = 52, 8 = 23, 16 = 42, . . .

may be of great assistance in different computations. Let us practice this skill.

Example 5.19 Represent in the form ak .
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(a) 4

(b) 9

(c) 16

(d) 25

(e) 49

(f) 81

(g) 100

(h) 125

(i) 128

(j) 1024

(k) 1 000 000

(l) 243

Solution

(a) 4 = 22

(b) 9 = 32

(c) 16 = 42 = 24

(d) 25 = 52

(e) 49 = 72

(f) 81 = 92 = 34

(g) 100 = 102

(h) 125 = 53

(i) 128 = 27

(j) 1024 = 210

(k) 1000000 = 10002 = 1003 = 106

(l) 243 = 35

Example 5.20 Write down (a) the first five powers of 2 and (b) the first five powers of
3. (It is allowed to use a calculator for this exercise.)

Solution

(a) 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32

(b) 31 = 3 32 = 9 33 = 27 34 = 81 35 = 243

5.6 Comparison of Powers of Numbers

One can compare two exponential numbers when they have the same base or the same expo-
nent. Other cases usually require more work.

Example 5.21 Which of the numbers 1050 or 650 is greater?

Solution 1050 > 650 since 10 > 6. By the definition of exponents, we have 50 copies of
each multiplied

10× · · · × 10︸        ︷︷        ︸
50 times

> 6× · · · × 6︸    ︷︷    ︸
50 times

Let a and b be whole numbers, and let k be a counting number.

If a > b, then ak > bk .
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Note that, in this rule, we have the same exponent k in ak and bk .

Example 5.22 Which of the numbers 1050 or 10100 is greater?

Solution 1050 < 10100 because 50 < 100 = 50 + 50.

10× · · · × 10︸        ︷︷        ︸
50 times

< 10× · · · × 10︸        ︷︷        ︸
50 times

× 10× · · · × 10︸        ︷︷        ︸
50 times

Let a be a whole number, and let k and l be counting numbers.

If k > l, then ak > al .

In this rule, the base of ak and al is the same.

Remark In this course, we compare integer powers of whole numbers. From our previ-
ous mathematical experience we know that the notion of an exponent can be extended to

negative or rational numbers, for example,
(1

2

)3
, (−5)

1
7 . In this case, comparison rules can

be different. For example, take k = 3, l = 2, and a =
1
2

. Then 3 > 2, but
(1

2

)3
<

(1
2

)2
since(1

2

)3
=

1
8

and
(1

2

)2
=

1
4

.

Example 5.23 Which of the numbers 1050 or 5100 is greater?

Solution 1 The bases 10 and 5 are different, so are the exponents 50 and 100. This means
that some extra work is required to match exponential expressions. Note that 10 = 2× 5, so
1050 = 250 × 550, while 5100 = 550 × 550. Then we need to compare 250 × 550 and 550 × 550.
Since 2 < 5, we have 250 < 550. Hence

1050 = 250 × 550 < 550 × 550 = 5100

Answer: 1050 < 5100.
Solution 2 Note that 52 = 25, so 5100 = 52×50 = 2550. Since 10 < 25, we can write

1050 < 2550 = 5100

Answer: 1050 < 5100.

Example 5.24 Which of the numbers 3−10 or 1 is greater?

Solution
3−10 =

1
310 < 1
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5.7 Exercises

5.7.1 Definition of a power of a number

Exercise 5.1 Using exponents, write the following in the form akbm.

(a) 3 · 3 · 3 · 3 · 3

(b) 6 · 7 · 7 · 6 · 6 · 7

(c) a · b · a · b · a · b

(d) 5 · 5 · 5 · 2 · 5 · 2 · 5

(e) x · y · y · y · y · x · x

Exercise 5.2 Write the following as powers of 10.

(a) 24 · 54 (b) 2 · 2 · 2 · 5 · 5 · 5

5.7.2 Properties of exponents

Exercise 5.3 True or false?

(a) 520×720 = 3520

(b) 35 × 42 = 69

(c) 9× 34 = 36

(d) ((62)2)2) = 68

(e) 410 × 320 = 620

(f) (175)2 = 177

(g) 85 × 35 = 115

(h) 154 = 54 × 34

(i) ((23)3)3 = 29

(j) (((23)2)−3)−2 = 1

(k) 23 × 2−2 × 23 × 2−2 = 1

(l)
23

32 ÷
23

32 = 1

(m)
23

32 ×
(

23

32

)−1

= 1

(n) 23 × 33 = 53

(o) 23 × 43 = 83

(p) 64 = 42 × 34

Exercise 5.4 Rewrite the following expressions with a single exponent ak (do not
evaluate).

(a) 72 · 75

(b) 58 · 38

(c) 910/35

(d) 417/45

(e) 8 · 28

(f) 94 · 166
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Exercise 5.5 True or false?

(a) 23 · 32 = (2 · 3)3

(b) 710 · 810 = (7 · 8)10

(c) 35 · 24 = 69

(d) (2 · 7)5 = 25 · 75

(e) 6 · 23 = 123

(f) (23)10 = 230

(g) 25 · 24 = 24 · 52

(h) 34 · 35 · 3 = 3·10

(i) 920 · 240 = 640

(j) ((52)2)2 = 58

Exercise 5.6 Simplify and write the result in the form 2k .

(a) 23 × 23 × 23 × 23 × 23 (b) ((((23)3)3)3)3 (c) 233

Exercise 5.7 Find x.

(a) 58 · 5x = 512 (b) (5x)4 = 512 (c) 5x · 7x = 3512

Exercise 5.8 Insert parentheses to obtain true statements.

(a) 5× 42 − 22 + 32 = 69 (b) 32 − 4× 23 − 3 = 25 (c) 2× 32 − 22 × 10 = 140

Exercise 5.9 Simplify

(a) 42 − 23 × 32

6
(b) 52 − 42 − 25 ÷ 23

(c)
2× (4− 1)4

15− 2× 3

Exercise 5.10 Simplify

(a) 22 + 4× (32 − 6)2
(b)

5 + 3× (42 − 32) + 22

52 − 10

5.7.3 Evaluation of powers of numbers

Exercise 5.11 Evaluate without a calculator. Put in order from the smallest to the
largest numbers.

33, 24, 82
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Exercise 5.12 Find the values of the following exponential expressions.

(a) 23

(b) 52

(c) 34

(d) 43

(e) 24

(f) 991

(g) 112

(h) 130

(i) 104

Exercise 5.13 By what number should the following expressions be multiplied to
obtain powers of 10?

(a) 2

(b) 5

(c) 2 · 52

(d) 24 · 52

(e) 23 · 56

(f) 80

(g) 16

(h) 50

Example: 25 must be multiplied by 4 to get 25× 4 = 100 = 102.

Exercise 5.14 Which of the following numbers are powers ak , k > 1, of some counting
numbers.

(a) 4

(b) 7

(c) 9

(d) 16

(e) 25

(f) 49

(g) 56

(h) 81

(i) 100

(j) 125

(k) 128

(l) 243

(m) 1024

(n) 1000000

Example: The number 8 is a power of 2 since 8 = 23. The number 6 cannot be written
as a power ak of some other number a and k > 1.

5.7.4 Comparison of powers of numbers

Exercise 5.15 Using properties of exponents, determine the larger number in the
following pairs:

(a) 610 or 320

(b) 510 or 210

(c) 210 × 510 or 210 × 210

(d) 49 or 220

(e) 1510 or 520

(f) 1050 or 650

(g) 1050 or 10100

(h) 1050 or 5100

(i) 3−10 or 1



6. HISTORICAL NUMERATION SYSTEMS

Mysterious symbols.

6.1 Introduction

Question Can you guess what these pictures mean?

Answer These pictures represent numbers written in numeration systems of different
civilizations, Mayan, Roman, Babilonian, Egyptian, and in the numeration system that we
use today. To figure out the values of these numerals, one has to understand the meaning
of the symbols and the rules of the numeration systems. The topic of this chapter is how
people write down numbers. We want to compare some historical numeration systems with
the system that we use in our daily life. This is the best way to understand (and to appreciate)
our own way of writing numbers.

Our plan is as follows.

• Review the key features of the numeration system that we use today.

• Outline characteristics of some historical numeration systems which existed at different
times in different civilizations. We will take a note of their advantages and disadvan-
tages over our system.

• In Chapter 7, we will talk about nondecimal numeration systems, including the binary
system which is used in computers.

71
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Remark The modern version of the Hindu-Arabic numeration system is prevalent world-
wide, but it is far from being the only numeration system used by people. More than one
hundred numeration systems have existed over the past five thousand years. In this chapter
we will outline some features of several historical numeration systems, but it is important
to understand that the accurate description of the nuances and variations of mathematical
language of any civilization is complicated. The summary in this chapter is based on the
information from Numerical Notation: A Comparative History by Stephen Chrisomalis (Cam-
bridge University Press, 2010). For the complete view of the topic it is recommended to read
more on the academic studies of numerical notations by historians, archeologists, anthro-
pologists, linguists, and mathematicians.

6.2 Western (Hindu–Arabic) Numeration System

The conventional term for the system that we use today is Hindu-Arabic or Arabic numerals,
referring to their historical origins. Since symbols in those ancient scripts differ from the
ones that we commonly use today, some scholars prefer the term Western numerals.

How do we write numbers today? How could we explain to aliens the meaning, for ex-
ample, of 538? We would probably tell them that the mathematical meaning of this numeral
is contained in its expanded form

538 = 5× 100 + 3× 10 + 8× 1

Note that our numeration system is a representation of every number as the sum of powers
of 10

1, 10, 100, 1000, . . .

multiplied by the values of digits

538 = 5× 102 + 3× 101 + 8× 100

Grouping into sets of powers of 10 is the fundamental principle of our numeration system.
We say that our system is the base ten numeral system or the decimal system.

Remark In Chapter 7, we discuss systems that are based on powers of other numbers.
For example, the binary system uses powers of 2

1, 2, 4, 8, 16, . . .

instead of powers of 10.

We used digits 3, 5, and 8 to write down the number 538. More generally, the ten digits

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

are the symbols that we use in combination to represent all possible numbers.

Question What is the difference between a digit and a number?

Answer Digits are symbols. They are similar to letters of an alphabet. Numbers are
notions that are written with the help of digits in the same manner as words are written
with the help of letters. There are only ten digits, but infinitely many numbers.

Note that the order of digits in a numeral is important: 538 and 835 are different num-
bers. We say that our system is positional or that it uses the place-value principle.
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6.3 Tally Numeration System

The tally marks maybe the oldest way to count things: each counted object is represented by
a stroke, a tally mark. Each numeral is a line of several strokes.

Question What are advantages and disadvantages of this system?

Answer The obvious advantage of the tally numeration system is its simplicity. We still
use tally marks to count scores in games, attendance, and some intermediate results.

Among the main disadvantages is that the system is not practical for counting large num-
bers.

• Large numbers require many individual symbols.

• It is difficult to read such numerals, and it is easy to make a mistake when you write
them.

Very often, for the sake of legibility the tally marks are arranged in groups of five, where
the last mark is placed across the other four in the group:

6.4 Egyptian Numeration System

One of the most well-studied hieroglyphic systems is the ancient Egyptian numeration sys-
tem. It was in common use between about 3250 BCE and 400 CE in the Nile Valley area. The
Egyptian numeration system has the decimal structure. As in our system, it is based on powers
of 10. For every power of 10 a new symbol was introduced, which roughly looked like



74 6.5. Babylonian Positional System

The system has the simple additive principle: The values of individual numerals are just
added together. For example,

would correspond to

3 + 5 + 200 + 3000 + 30000 + 200000 = 233253

Question What are advantages and disadvantages of the Egyptian numeration system?

Answer The system is intuitive and simple. It uses less symbols for large numbers than
tally system. We also note that the order of symbols in this system is not very important.
Indeed, there exist inscriptions written from left to right, right to left, and top to bottom.
At the same time, still large numbers are represented by lengthy numerals. For example, 18
symbols are needed to write the numeral

which is just 567 written with three symbols in our system. Thus, it takes longer time to
write these numerals. In addition, the symbols themselves are not that easy to reproduce.

6.5 Babylonian Positional System

The cuneiform systems were commonly used in Mesopatamia for over 1,500 years, starting
from around 2000 BCE. There were several types of cuneiform numeration systems. Many of
them were additive and based on groups of ten. Very often numbers like 60, 600, 3600 have
had the special notation. The origins of our 60 minutes in one hour and the 360◦ division
of the circle can be traced to the influence of Babylonian astronomy and mathematics on
Western mathematics through Ancient Greeks.

The most famous example of an old Mesopatamian numeration is the Babylonian posi-
tional system. It was not the main numeration system in the region for economic and cultural
purposes, but for a short period has had a limited use in astronomy and higher mathemat-
ics. Yet, the elegance of this base 60 positional numeration system and resemblance of the
decimal system continue to astonish many historians of mathematics.

Here are the main principles of the Babylonian numeration system.

• The system uses only two symbols

Note that the shape of signs is dictated by the shape of writing tools. These symbols
are convenient to reproduce by impressing a sharp stylus onto wet clay.
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• Up to the number 59, they are represented in an additive way:

• For a larger number, the positions of combination of basic symbols encode the expan-
sion of numerals in powers of 60

1, 60, 3600, . . .

For example, according to the rules of the system, the numeral

consists of 44 in the leftmost position (corresponding to 602 = 3600), 20 in the middle
position (corresponding to 601 = 60), and 11 in the last position (corresponding to
600 = 1). All together, this gives the value

44× 602 + 20× 60 + 11 = 159611

Thus, the system is based on the place-value principle and the order of symbols is im-
portant.

• The system is very advanced, but it may produce confusing situations. There is no zero
symbol that would serve as a place holder, and for this reason without context it may

be difficult to distinguish the symbol as 1 from 60 or as 11 from 10×60+1 = 71.
To resolve this ambiguity, some texts used a bigger symbol for 60 or a large empty
space to indicate the empty position. Sometimes, numerals were arranged by placing
positional values in columns.

6.6 Maya Numeration System

The Mesoamerican numeration systems started to develop as early as 400 BCE and were in
use until the Spanish conquests of the sixteenth century. Most of the information on the
Maya numeration system comes from carved inscriptions and a few surviving codices. The
main application of these numerals is calendarical, enumerating periods of time. This may
explain some peculiarities of this numeration system.
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• Small numbers from 1 to 19 were written in bar-and-dot symbols by additive principles,
where the dot stands for 1 and the bar stands for 5.

• The system had a zero which served as a place-holder within the numeral. Different
symbols were used for zero, in codices the most common sign looked like a “shell.”

• Twenty was a distinguished number that occasionally was denoted by a special glyph
with the meaning of the moon or lunar month.

• Recall that when we write a date like (03 − 28 − 2002), each position indicates certain
time units: the 28th day, the third month, the two thousand second year since the
starting point of the calendar. In the context of a calendar, a Mayan numeral could be
written in columns, where each level would also correspond to a time period: a day,
a lunar month of twenty days, a year of eighteen lunar months (or 360 days), twenty
years, four hundred years, with each successive period after that to be twenty times
the previous one. (Here, we again stress that real variations of historical numeration
systems are complicated, and we only outline some simplified ideas.) When a numeral
phrase represents a date, its expanded form calculates the amount of time between the
starting point of the Maya calendar and the date. For example, using these rules, we
can write
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which means 12 days, 0 lunar months, (10 + 14× 20 + 9× 202 =)3890 years or

12 + 0× 20 + 10× 18× 20 + 14× 18× 202 + 9× 18× 203

= 12 + 0× 20 + 10× 360 + 14× 7200 + 9× 144000

= 12 + 3600 + 122400 + 1296000

= 1422012 days from a start of the Mayan calendar

• Observe that Mayan numerals are based on groups of

1, 20, 18× 20, 18× 202, 18× 203 . . .

On the other hand, we almost never convert our dates to numbers of days, so, even
with the importance of this exercise, it is quite possible that Mayan numerals were not
applied this way by their users.

6.7 Roman Numeration System

Occasionally, we see numbers written in the Roman numerals in our daily life (for example,
dates, clock faces). Due to the Roman conquests it was the main numeral system in all of
Europe for nearly 1800 years, until only seven centuries ago it was replaced by the more
effective Hindu-Arabic system. Let us review the main principles of the system.

The basic Roman numerals are given by the table

Basic Roman numeral value
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Numbers are made out of combinations of basic numerals by using addition and, some-
times, subtraction.
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Example 6.1 What are the values of the Roman numerals?

(a) VII (b) XXV (c) LVII (d) CCLXXXII

Solution

(a) VII= 5 + 1 + 1 = 7

(b) XXV= 10 + 10 + 5 = 25

(c) LVII=50 + 5 + 1 + 1 = 57

(d) CCLXXXII = 100 + 100 + 50 + 10 + 10 + 10 + 2 = 282

In some cases, to prevent numbers from being too long, the subtraction notation was used.

Example 6.2

(a) Instead of writing 4 as IIII, one interprets 4 = 5 − 1, which is represented as
IV= 5− 1 = 4 (the subtracted I is placed to the left of V).

(b) Instead of writing 9 as VIIII, one interprets 9 = 10 − 1, which is represented as
IX= 10− 1 = 9 (the subtracted I is placed to the left of X).

(c) Instead of writing 40 as XXXX, one interprets 40 = 50− 10, which is represented
as XL= 50− 10 = 40 (the subtracted X is placed to the left of L).

The subtraction rule is a little bit tricky due to some restrictions.

Example 6.3 How is 49 written as a Roman numeral?

Solution It is tempting to write 49 = IL which represents 49 = 50− 1. But, according to
the existing standard rules for Roman numerals, this turns out to be not correct. These rules
state that the subtraction notation is used only for the following pairs of Roman symbols:

Subtraction principle is used value
IV 4 =5-1
IX 9 =10-1
XL 40=50-10
XC 90 =100-10
CD 400=500-100
CM 900=1000-100

For example, according to this principle, we do not write 99 =100−1=IC. Instead, we use
99= 90+ 9=XC+IX= XCIX.

Example 6.4 Convert the following numbers to Roman numerals:
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(a) 21

(b) 19

(c) 39

(d) 501

(e) 499

(f) 543

(g) 1999

(h) 2150

Solution

(a) 21=XXI

(b) 19=X+ IX= XIX

(c) 39= 30+9= XXXIX

(d) 501=CI

(e) 499= 400+90+9=CD+XC+IX= CDXCIC

(f) 543=500+40+3= D+XL+III= DXLIII

(g) 1999=1000+900+90+9 = M+ CM+XC+IX= MCMXCIX

(h) 2150= 2000+100+50=MM+C+L= MMCL

Example 6.5 Find the values of the following Roman numerals:

(a) XVII (b) CI (c) DXIX (d) MCMLXXIV

Solution

(a) XVII= X+VII= 10+7=17

(b) CI=C+I= 100+1=101

(c) DXIX= D+X+IX= 500+10+9=519

(d) MCMLXXIV= M+CM+LXX+ IV=1000+900+70+4=1974

Question What are advantages and disadvantages of the Roman numeration system?

Answer One can quickly note that the Roman numerals are not difficult to use for ad-
dition and subtraction of whole numbers, but multiplication and division are complicated.
The system does not have zero and is not well designed for operations with fractions. The
more progressive Hindu-Arabic numeration system accelerated the development of mathe-
matical sciences in Europe.

6.8 Exercises

Exercise 6.1 List advantages and disadvantages of the historical systems discussed in
the class.
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Exercise 6.2 What is the difference between a digit and a number?

Abstract manipulations with numerals written in historical numeration systems can rep-
resent exercises that are mathematically correct, but have no historical meaning. For this
reason we consider here only problems on Roman numerals.

Exercise 6.3 Write the numbers from 1 to 20 in the Roman numerals.

Exercise 6.4 Write the following Roman numerals as decimals:

(a) IV

(b) VI

(c) LXX

(d) XI

(e) XC

(f) CMX

(g) CCLXXI

(h) MCCCXLIV

(i) MMMCXLIX

Exercise 6.5 Explain why these collections of symbols do not represent correct Roman
numerals. Suggest what number was incorrectly written and give a correct Roman
numeral.

(a) VIIII (b) XVX (c) ID

Exercise 6.6

(a) Write today’s date in Roman numerals.

(b) Write the year of your birth in Roman numerals

(c) Write the year of the birth of one of your family members in Roman numerals.



7. NONDECIMAL BASE SYSTEMS

Base two numerals and base seven numerals.

7.1 Decimal Numeration System

In Chapter 6, we looked at examples of how different civilizations recorded numerals. Let
us review the main features of our numeration system.

• Our system is called decimal since it uses groups of powers of ten

100 = 1, 101 = 10, 102 = 100, 103 = 1000, . . .

• All numbers are written with the help of ten symbols, called digits,

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Our system is positional. A number is represented by a sequence of digits placed in one
line in order. For example, 123 and 321 represent different numbers since the digits
are placed in different order.

• Positions of digits carry information about the powers of ten that should be used to
recover the expanded form of the number.

81
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Example 7.1 The number 2364 has the expanded form

2364 = 2× 1000 + 3× 100 + 6× 10 + 4× 1

= 2× 103 + 3× 102 + 6× 101 + 4× 100

Let us mark the positions of the digits of the number 2364 with labels 0,1,2,3, . . .
from right to left:

2 3 6 4
3 2 1 0

Then the labels exactly match the powers of ten in expanded form. For example, 4 is
placed in position 0, so it should be multiplied by 100.

This way of encoding numbers is very efficient and allows us to write very large numbers
in a compact nonambiguous form.

7.2 Is Ten a Special Number?

We use powers of ten in our numeration system. We saw that many civilizations used ten in
their numeration systems too. It may look like that ten is a special number that happens to
be the easiest for calculations. This is not exactly the case. From the point of view of math-
ematics, the abstract number ten and its powers are not “easier” than many other numbers.
It is commonly suggested that the choice of ten for the base of our numeration system is
historically due to the possession of ten fingers as a convenient counting tool. Quite possible
that if we would use 60 or 20 as the base of our system (as some civilizations did!), these
numbers and their multiples would be the nicest round numbers for us. Hence the number
ten is special for our numeration system more for historical or anthropological reasons than
for its mathematical properties.

In this chapter, we discuss numeration systems that have the same principle as our sys-
tem, but use a nondecimal base. We may not see these systems often in our daily life, but
they do have applications to modern science and technology. Discussion of general systems
will again contribute to a better understanding of our numeration system.

7.3 Conversion from Binary to Decimal System

Imagine that, one day, we meet aliens from another planet, where a similar numeration
system is used, but with powers of two instead of ten:

20 = 1, 21 = 2, 22 = 4, 23 = 8, . . .

We can compare the main features of our decimal (base ten) system and their binary (base
two) system.

Our (base ten) system Aliens’ (base two) system
We use powers of ten They use powers of two

100 = 1, 101 = 10, 102 = 100, 103 = 1000,. . . 20 = 1, 21 = 2, 22 = 4, 23 = 8, . . .
We use ten symbols as digits They use two symbols as digits
{0,1,2,3,4,5,6,7,8,9} {0,1}

which allows us to write any number which allows them to write any number
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To distinguish numbers written in the binary system from those written in our decimal
system, we indicate the base at the end of the number. For example, the number 111two is
written in the language of aliens and 111 is written in our system.

We would like to translate some numbers of aliens into our language. How are we going
to do this?

Example 7.2 What number is represented by the base two numeral 111two?

Solution To decode this number, we need to find the expanded form of the numeral. It
is done in the same way as in our system, but with powers of two. First, mark the positions
of digits

1 1 1 two
2 1 0

The positions tell us what power of 2 is matched with each digit in expanded form. We
simplify the expanded form to get the final answer

111two = 1× 22 + 1× 21 + 1× 20 = 4 + 2 + 1 = 7

Answer: 111two represents the number 7.

Example 7.3 What number is represented by the base two numeral 1101two?

Solution Label the positions of digits, reconstruct the expanded form, and simplify.

1 1 0 1 two
3 2 1 0

1101two = 1× 23 + 1× 22 + 0× 21 + 1× 20 = 8 + 4 + 0 + 1 = 13

Answer: 111two = 13.



84 7.4. Conversion from Other Base Systems to Decimal System

Example 7.4 What number is represented by the base two numeral 101two?

Solution
1 0 1 two
2 1 0

The positions tell us how to match powers of 2 with digits in expanded form

101two = 1× 22 + 0× 21 + 1× 20 = 4 + 0 + 1 = 5

Answer: 101two = 5.

Remark While we explain the binary system with the help of imaginary communication
with aliens, the system itself is not imaginary at all. It is widely used at our planet in com-
puter related technologies, where the digit 1 represents the situation “a signal is coming”
and the digit 0 means “no signal.”

7.4 Conversion from Other Base Systems to Decimal System

We discussed the base ten and base two numeration systems. Any counting number greater
than one can serve as the base of a positional numeration system, and it all works in a similar
way. Let us look at examples.

Suppose that we meet aliens from a planet where the base six numeration system is used.
This means the following.

• The expanded form of their numerals uses powers of six

60 = 1, 61 = 6, 62 = 36, 63 = 216, . . .

• There are six symbols that serve as digits

{0,1,2,3,4,5}

• The position of each digit in a numeral indicates the corresponding power of 6 in ex-
panded form.

• To distinguish base six numerals, we put the label “six.”

Example 7.5 Convert the base six numeral 10six to a decimal number.
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Solution Label positions of digits to reconstruct the expanded form

1 0 six
1 0

10six = 1× 61 + 0× 60 = 6 + 0 = 6

Answer: 10six = 6.

Example 7.6 Convert the base six numeral 231six to a decimal number.

Solution
2 3 1 six
2 1 0

231six = 2× 62 + 3× 61 + 1× 60 = 2× 36 + 3× 6 + 1× 1 = 72 + 18 + 1 = 91

Answer: 231six = 91.

Example 7.7 Convert the base six numeral 500six to a decimal number.

Solution
5 0 0 six
2 1 0

500six = 5× 62 + 0× 61 + 0× 60 = 5× 36 + 0× 6 + 0× 1 = 180
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Answer: 500six = 180.

The above examples for the bases two and six give a clear idea of how to handle other
base systems.

Example 7.8 Convert the base seven numeral 21seven to a decimal number.

Solution
2 1 seven
1 0

21seven = 2× 71 + 1× 70 = 2× 7 + 1× 1 = 14 + 1 = 15

Answer: 21seven = 15.

7.5 Systems with a Base Greater Than Ten

Note that the base ten system uses ten digits, the base two system uses two digits, the base
six system uses six digits, and so on. More generally, the base N system uses N digits. We
need to make a comment on systems that have a base greater than ten. For example, consider
the base twelve system. According to the general rule, we use twelve symbols as digits. It is
tempting to choose ordinary numbers as such symbols

{0,1,2,3,4,5,6,7,8,9,10,11}

The idea would be correct, but there would be a problem with the last two “digits” 10 and 11
because they can produce ambiguity. Indeed, 10twelve could be understood in two different
ways:

1 0 twelve
1 0

10twelve = 1× 121 + 0× 120 = 12

or
10 twelve
0

10twelve = 10× 120 = 10
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To avoid ambiguity, it is better to introduce other symbols for the “digits” 10 and 11, for
example, A = 10 and B = 11. Then our collection of digits is

{0,1,2,3,4,5,6,7,8,9,A,B}

Example 7.9

Atwelve = 10× 120 = 10

10twelve = 1× 121 + 0× 120 = 12

11twelve = 1× 121 + 1× 120 = 13

AAtwelve = A× 121 +A× 120 = 10× 12 + 10× 1 = 130

1Btwelve = 1× 121 +B× 120 = 1× 12 + 11× 1 = 23

5Atwelve = 5× 121 +A× 120 = 60 + 10 = 70

7.6 Conversion from Decimal System to Other Base Systems

We learned how to “read a foreign language,” that is, how to translate numerals of other
base systems into our decimal system. Now, we would like to learn to “speak the foreign
language,” that is, to translate given decimal numerals into the other base language of aliens.
This process involves division with remainder by powers of numbers.

Example 7.10 How is the number 395 converted to a base eight numeral?

395 = ???eight

Solution Let us establish some facts about the base eight system.

• The system uses powers of eight. Let us write the first few of them

80 = 1, 81 = 8, 82 = 64, 83 = 512, . . .
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• The digits of the base eight system are {0,1,2,3,4,5,6,7}. Our final answer will be a
numeral written with digits from this collection.

The transition “from one language to another” goes through the expanded form, so we want
to write 395 as a combination of powers of 8

395 = ?8? + ?8? + · · ·+ ?81 + ?80

The coefficients of powers of eight (the green question mark ? ) are digits of the base eight
numeral, and powers of eight (the orange question mark ? ) provide their positions. To find
the digits, we divide 395 by the largest power of 8 that can be fit into 395

80 = 1
81 = 8

82 = 64
395 →

83 = 512
. . .

Since
82 = 64 < 395 < 512 = 83

we have 82 = 64 to be the largest power of 8 that fits into 395, so we divide 395 by 64 with
remainder:

395 = 6× 64 + 11 = 6× 82 + 11

Next, we repeat the same step with the remainder 11:

80 = 1
81 = 8

11 →
82 = 64

83 = 512
. . .

We have
81 = 8 < 11 < 64 = 82

The largest power of 8 that fits into 11 is 81, so we divide 11 by 8 with remainder:

11 = 1× 8 + 3 = 1× 81 + 3

We proceed with the new remainder 3:

80 = 1
3 →

81 = 8
82 = 64

83 = 512
. . .

We have
80 = 1 < 3 < 8 = 81
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and divide 3 by 1 with remainder:

3 = 3× 1 + 0 = 3× 80 + 0(← STOP )

The zero remainder tells us that we have to stop and the calculation is complete. Let us
summarize the preformed steps of the successive division with remainder:

395 = 6× 82 + 11

11 = 1× 81 + 3

3 = 3× 80

The boxed parts provide the answer: The green digits (quotients) obtained at each step are
exactly the digits of the corresponding base eight numeral, and the orange powers of eight
indicate their positions. Our calculation can be interpreted as the expanded base eight form

395 = 6× 82 + 1× 81 + 3× 80

We write the final answer
395 = 613eight

Let us look at other examples.

Example 7.11 Convert the number 70 to a base eight numeral.

70 = ??eight

Solution We again use powers of eight

80 = 1, 81 = 8, 82 = 64, 83 = 512, . . .

and the digits {0,1,2,3,4,5,6,7}. We perform the division with remainder by the largest
power of eight that can be fit in the number at each step

82 = 64 < 70 < 512, so 70 = 1× 64 + 6 = 1× 82 + 6

80 = 1 < 6 < 8 = 81, so 6 = 6× 1 + 0 = 6× 80 + 0(← STOP )

The boxed parts

70 = 1× 82 + 6

6 = 6× 80 + 0

tell us that
70 = 1× 82 + 0× 81 + 6× 80

and we place the digits
1 0 6 eight
2 1 0

Answer: 70 = 106eight.
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Example 7.12 Convert the number 74 to a base six numeral.

74 = ??six

Solution We use powers of six

60 = 1, 61 = 6, 62 = 36, 63 = 216, . . .

and the digits {0,1,2,3,4,5}. Division with remainder yields

36 < 74 < 216, so 74 = 2× 36 + 2 = 2× 62 + 2

60 = 1 < 2 < 6 = 61, so 2 = 2× 1 + 0 = 2× 60 + 0(← STOP )

The boxed parts tell us the digits and their positions

74 = 2× 62 + 0× 61 + 2× 60

and we place the digits
2 0 2 six
2 1 0

Answer: 74 = 202six.

Example 7.13 Convert the number 100 to a base six numeral.

100 = ???six

Solution We use powers of six

60 = 1, 61 = 6, 62 = 36, 63 = 216, . . .

and the digits {0,1,2,3,4,5}. Division with remainder yields

36 < 100 < 216, so 100 = 2× 36 + 28 = 2× 62 + 28

6 < 28 < 36 = 62, so 28 = 4× 6 + 4 = 4× 61 + 4

1 < 4 < 6, so 4 = 4× 60 + 0 = 4× 60 + 0(← STOP )
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The boxed parts tell us the digits and their positions

100 = 2× 62 + 4× 61 + 4× 60

and we place the digits
2 4 4 six
2 1 0

Answer: 100 = 244six.

7.7 Exercises

7.7.1 The expanded form of a numeral in decimal system

Exercise 7.1 Write the following numbers in expanded form.

(a) 70 (b) 923 (c) 48 200 123

Exercise 7.2 Write the following in standard place-value form.

(a) 1 · 1000 + 6 · 100 + 2 · 1

(b) 4 · 105 + 3 · 102 + 1 · 100

(c) 8 · 104 + 2 · 10

(d) 1 · 101 + 2 · 100

(e) 5 · 106 + 3 · 103 + 3 · 100

(f) 1 · 105 + 5 · 101

7.7.2 Conversion from other base systems to decimal system

Exercise 7.3 How many digits (symbols) are used in the base seven system?

Exercise 7.4 How many digits (symbols) are used in the base fifty system?

Exercise 7.5 Why do we need to introduce extra symbols, besides the digits
{0,1,2,3,4,5,6,7,8,9}, in the base thirteen system?

Exercise 7.6 What is wrong with the numeral 67seven?

Exercise 7.7 What is wrong with the numeral 533four?
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Exercise 7.8 Write the following base six numerals in expanded base six form.

(a) 10six (b) 125six (c) 4510six

Exercise 7.9 Convert the following numerals from the indicated base system to the
base ten system.

(a) 110two

(b) 1000two

(c) 100two

(d) 101two

(e) 100three

(f) 100five

(g) 123five

(h) 2032four

(i) 102eight

Exercise 7.10 True or false?

(a) 5nine = 5 (b) 30four = 20six (c) 200three = 100nine

Exercise 7.11 The base thirteen numeration system has thirteen symbols
{0,1,2,3,4,5,6,7,8,9,A,B,C}, where A = 10, B = 11, and C = 12. Convert the following
base thirteen numerals to base ten numerals.

(a) 133thirteen

(b) Cthirteen

(c) B1thirteen

(d) CAthirteen

(e) ACthirteen

(f) 1AC thirteen

(g) 10Bthirteen

Exercise 7.12 Write the numbers from 1 to 10 in the base five.

Exercise 7.13 Write the numbers from 1 to 10 in the base nine.

Exercise 7.14 What is the largest three-digit base two number?

Exercise 7.15 What is the largest three-digit base four number? What is the smallest
four-digit base four number?

Exercise 7.16 What numeral follows 234five in the base five system?



Chapter 7. NONDECIMAL BASE SYSTEMS 93

7.7.3 Conversion from decimal system to other base systems

Exercise 7.17 Convert the following base ten numerals to numerals in the indicated
base.

(a) 395 =?eight

(b) 748 =?four

(c) 54 =?two

(d) 74 =?six

(e) 74 =?eleven

Exercise 7.18 Find the missing base.

(a) 35 = 21?

(b) 43six = 27?

(c) 51seven = 36?

(d) 32 = 44?

(e) 31four = 11?

(f) 50eight = 10?



8. PRIME NUMBERS AND DIVISIBILITY TESTS

2,3,5,7,11,13. . . .

8.1 Prime Numbers

In this chapter, we talk about the structure of counting numbers. All of them are made of
building blocks, prime numbers.

A prime number is a counting number that has exactly two divisors 1 and itself.

Remark The number 1 is not considered to be a prime number since it has only one divisor.

Question Write down all prime numbers less than 50.

Answer 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47.

94
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Remark It is recommended to memorize all the prime numbers less than 50. This may
be useful in many problems.

8.2 Prime Factorization

Prime numbers serve as building blocks for all counting numbers due to a very important
statement.

Fundamental theorem of arithmetic. Each counting number greater than one can be ex-
pressed as the product of primes in a unique way up to the order of factors.

The prime factorization of a number is a representation of the number as the product
of primes.

Example 8.1 Here are examples of some prime factorizations.

(a) 6 = 2× 3

(b) 17 = 17

(c) 60 = 22 × 3× 5

(d) 39 = 3× 13

(e) 250 = 2× 53

Note that 60 = 2 × 6 × 5 and 250 = 10 × 25 are not prime factorizations since not all
factors are prime. The order of factors in the prime factorization is not important. For
example, the factorizations

60 = 2× 2× 3× 5 = 3× 2× 5× 2

are considered to be equivalent.

Question How does one find the prime factorization of a number?

Answer One can do it step-by-step, as in this example:

120 = 20× 6 = 4× 5× 2× 3 = 2× 2× 5× 2× 3 = 23 × 3× 5

Equivalently, one can use a factorization tree

120

20

4

2 2

5

6

3 2
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Note that there may be different factorization trees, but the resulting prime factorization is
always the same up to the order of prime factors.

120

12

4

2 2

3

10

5 2

This tree also gives 120 = 23 × 3× 5.

Example 8.2 Find the prime factorizations of the following numbers:

(a) 13

(b) 72

(c) 108

(d) 121

(e) 380

(f) 1000

(g) 129

(h) 179

Solution Using factorization trees, we find

(a) 13 = 13

(b) 72 = 23 × 32

(c) 108 = 22 × 33

(d) 121 = 112

(e) 380 = 22 × 5× 19

(f) 1000 = 23 × 53

(g) 129 = 3× 43

(h) 179 = 179

The last example, the prime factorization of 179, appears to be difficult since we have to
figure out that this number is already prime. This leads to the important questions.

1. How does one start a factorization tree?

2. How does one determine whether a given number is prime?

3. More generally, how to determine what numbers divide a given number?

In many cases, tests for divisibility may help us answer these questions. For example,
using such a test, one can, without performing division, quickly determine that the number
612311 is not divisible by 3. We learn tests for divisibility by 2,3,4,5,6,8,9,10,11,12 (we skip
7). These tests are very practical for various computations. In particular, they save time,
make computations more efficient, help to start factorization trees and simplify fractions.

8.3 Notation for Divisibility

The following notation is commonly used when divisibility is discussed.
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Let a and b be counting numbers. We write a | b and say that a divides b if there exists
a counting number x such that ax = b. In this case, we can also say that b is a multiple
of a and a is a divisor of b. We write a 6 | b if a does not divide b.

For example, 4 | 8 and 3 | 12, but 36 | 50 and 26 | 11. We also need the definition of relatively
prime numbers.

Two counting numbers are called relatively prime if their only common divisor is 1.

Example 8.3 The following pairs of numbers are relatively prime:

(a) 2 and 3

(b) 14 = 2× 7 and 15 = 3× 5

(c) 6 = 2× 3 and 121 = 11× 11

The numbers 21 and 28 are not relatively prime since 21 = 7 × 3, 28 = 7 × 4, and 7 is a
nontrivial common divisor of both numbers 21 and 28.

8.4 Divisibility Tests

8.4.1 Test for divisibility by two

Example 8.4 Is the number 1234567898345 divisible by two? How did you get the
answer?

Solution To determine whether a number is divisible by two, we need to look only at
the last digit. Since the last digit 5 is odd, the whole number is odd, not divisible by two.
This is exactly how the test for divisibility by 2 is formulated.

A number is divisible by two if and only if its ones digit is 0, 2, 4, 6, or 8.

8.4.2 Test for divisibility by three

Example 8.5 Is the number 121452 divisible by 3?

Solution Yes, it is. This follows from the divisibility test.



98 8.4. Divisibility Tests

A number is divisible by three if and only if the sum of its digits is divisible by 3.

Usually, the sum of digits is smaller than the original number, so it is easier to check
whether it is a multiple of 3. In our example,

the sum of digits = 1 + 2 + 1 + 4 + 5 + 2 = 15

Since 3 | 15, we have 3 | 121452 by the test.

Remark If a number has many digits, we do not need to add all of them to find the total
sum. It is enough to show that the digits can be arranged in groups in such a way that, in
each group, the sum is a multiple of three.

Example 8.6 Is the number 101422272 divisible by 3?

Solution By the test for divisibility by three, we check whether the sum of digits is
divisible by three.

1 + 0 + 1 + 4︸        ︷︷        ︸
6

+2 + 2 + 2︸   ︷︷   ︸
6

+ 7 + 2︸︷︷︸
9

Each group gives a sum that is a multiple of three. Hence the total sum is a multiple of three.
Answer: Yes, the number 101422272 is divisible by three.

Example 8.7 Is the number 111222555 divisible by 3?

Solution By the test for divisibility by three, we check whether the sum of digits is
divisible by three.

1 + 1 + 1︸   ︷︷   ︸
3

+2 + 2 + 2︸   ︷︷   ︸
6

+5 + 5 + 5︸   ︷︷   ︸
15

Each group gives a sum that is a multiple of three. Hence the total sum is a multiple of three.
Answer: Yes, the number 111222555 is divisible by three.

8.4.3 Test for divisibility by four

A number is divisible by four if and only if the number represented by its last two
digits is divisible by 4.

Example 8.8 Is the number 12378943216 divisible by 4?

Solution Yes, this number is divisible by 4 since the last two digits form the number 16
and 4 |16.
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Example 8.9 True or false? 4 |356

Solution True since 4 |56 (recall that 56 = 7× 8 = 7× 2× 4).

Example 8.10 Does 4 divide 1022?

Solution No, it does not since 4 does not divide 22.

Example 8.11 List all digits that can replace the question mark of the number

123?0

to make this five-digit number divisible by

(a) 3 (b) 4 (c) 12

Solution Let x be a missing digit.

(a) By the test for divisibility by three, a number is divisible by 3 if the sum of digits
1 + 2 + 3 + x is divisible by 3. This means that x can be 0, 3, 6, or 9. These cases
correspond to the numbers 12300, 12330, 12360, or 12390.

(b) By the test for divisibility by four, the last two digits form a number x0 which must be
divisible by 4. This means that x can be 0, 2, 4, 6, or 8. These cases correspond to the
numbers 12300, 12320, 12340, 12360, or 12380.

(c) Note that 12 = 3 × 4 and the numbers 3 and 4 are relatively prime. This means that a
number is divisible by 12 if and only if it is divisible by both 3 and 4. Thus, x is among
the common answers for (a) and (b), which are x = 0 or x = 6. The numbers 12300 and
12360 are divisible by 12.

8.4.4 Test for divisibility by five

The test for divisibility by five is easy and well known.

A number is divisible by five if and only if its ones digit is 0 or 5.

Example 8.12 5 6 | 17, 5 6 | 234, and 5 6 | 1001, but 5 | 100000005.

8.4.5 Test for divisibility by six

The test for divisibility by six is based on the two facts.

1. 6 = 2× 3.

2. 2 and 3 are relatively prime numbers. They have no nontrivial common divisors.
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A number is divisible by six if and only if it is divisible by both 2 and 3.

Example 8.13 Does 6 divide 222?

Solution Yes, since 2|222 and 3|222. Hence 6|222.

Example 8.14 Does 6 divide 842?

Solution No. We have 2|842, but 3 6 | 842 since the sum of digits is 8 + 4 + 2 = 14 and
3 6 | 14.

8.4.6 Test for divisibility by eight

The test for divisibility by seven is not simple and for this reason is rarely applied. We skip it
and go to the test for divisibility by eight. Observe that 8 = 2×4, but 2 and 4 are not relatively
prime. This means that we cannot follow the same logic as in the test for divisibility by six.
If a number is divisible by 2 and 4, this does not guarantee that it is divisible by 8.

Question Give an example of a number that is divisible by both 4 and 2, but is not
divisible by 8 = 4× 2.

Answer Many different examples can be suggested, for example, 4, 20, 36, . . . .

The true test for divisibility by eight has the following form.

A number is divisible by eight if and only if the number represented by its last three
digits is divisible by 8.

Example 8.15 Does 8 divide 12800?

Solution Yes, since the last three digits form 800 and 8|800.

Example 8.16 Is it true that 8|13056?

Solution Yes, since the last three digits form 056= 56 and 8|56.

Example 8.17 Does 8 divide 150008?

Solution Yes, since the last three digits form 008 = 8 and 8|8.

Example 8.18 Does 8 divide 406162?
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Solution No, since the last three digits form 162 = 160 + 2 and it is clear that 86 | 162.

8.4.7 Test for divisibility by nine

The test for divisibility by nine is similar to the test for divisibility by three.

A number is divisible by nine if and only if the sum of its digits is divisible by 9.

Example 8.19 Does 9 divide 124567281?

Solution The sum of digits can be arranged in groups that are multiples of nine:

1 + 2 + 4 + 5 + 6 + 7 + 2 + 8 + 1 = 1 + 2 + 6︸   ︷︷   ︸
9

+ 4 + 5︸︷︷︸
9

+ 7 + 2︸︷︷︸
9

+ 8 + 1︸︷︷︸
9

We see that the sum of digits is divisible by 9, so 9 |124567281.

8.4.8 Test for divisibility by ten

A number is divisible by ten if and only if its ones digit is zero.

8.4.9 Test for divisibility by eleven

This is a test of a new kind. After formulating the rule, we explain how to use it with the
help of an example.

To find out whether a number is divisible by eleven, complete the following steps.

Step 1. Break the digits of the number in two groups: the digits corresponding to odd
positions and the digits corresponding to even positions in the number.

Step 2. Find the sums A1 and A2 of all digits in each group.

Step 3. Find the absolute value of the difference A1 −A2. If it is zero or divisible by 11,
then the number is divisible by 11. Otherwise, it is not divisible by 11.

Example 8.20 Let us show that the number 1224675 is not divisible by 11.

Step 1. We break the digits in two groups.

1 2 2 4 6 7 5

Step 2. The sum of digits in the first group is A1 = 1 + 2 + 6 + 5 = 14. The sum of digits in
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the second group is A2 = 2 + 4 + 7 = 13.

Step 3. The absolute value of the difference of two sums is |A1 −A2| = 14 − 13 = 1. It is
not zero and is not divisible by 11. This implies that the number 1224675 is not
divisible by 11.

Example 8.21 Is the number 183909 divisible by 11?

Solution

Step 1. We break the digits in two groups

1 8 3 9 0 9

Step 2. The sum of digits in the first group is A1 = 1+3+0 = 4. The sum of digits in the second
group is A2 = 8 + 9 + 9 = 26.

Step 3. The absolute value of the difference of two sums is |A2 −A1| = 26 − 4 = 22. We know
that 11|22, so 11|183909.

Remark The difference A2 −A1 may be a positive or negative number, but only the ab-
solute value of this expression matters. We can consider A2 −A1 if A2 ≥ A1 and A1 −A2 if
A1 ≥ A2.

8.4.10 Test for divisibility by twelve

The test for divisibility by twelve is the last test that we discuss in these lectures.

A number is divisible by twelve if and only if it is divisible by both 4 and 3.

This test is based on the facts that 12 = 4× 3 and that 4 and 3 are relatively prime.

Example 8.22 Does 12 divide 888?

Solution Yes, since 3|888 (check that 8+8+8 = 24 and 3|24) and 4|888 (since 4|88). Both
3 and 4 divide 888, so 12|888.

Example 8.23 Take any eight-digit number and determine whether it is divisible by
2,3,4,5,6,8,9,10,11, 12.

Solution We solve this problem for the number 47928135.



Chapter 8. PRIME NUMBERS AND DIVISIBILITY TESTS 103

Number Yes/No Reason
2 no the last digit is odd
3 yes the sum of digits = 4 + 7 + 9 + 2 + 8 + 1 + 3 + 5 = 39 and 3|39
4 no 46 | 35 (another possible argument is that the number is not even)
5 yes the last digit is 5
6 no not divisible by 2
8 no 86 | 135 (another possible argument is that the number is not even)
9 no sum of digits is 39, and 96 | 39

10 no does not end with zero
11 no A1 = 4 + 9 + 8 + 3 = 24. A2 = 7 + 2 + 1 + 5 = 15.

|A1 −A2| = |24− 15| = 9, and 11 6 | 9
12 no not divisible by 4

8.5 Prime Factorization Using Divisibility Tests

We discussed that all counting numbers are made of building blocks, prime numbers. Recall
that the prime factorization can be found by constructing factorization trees. Tests for divisi-
bility may be very helpful to construct these trees since they help us find divisors. Let us look
at examples.

Example 8.24 Find the prime factorization of 147.

Solution Using divisibility test, we note that 3|147. This allows us to start the factoriza-
tion tree with the division of 147 by 3.

147

3 49

7 7

Answer: 147 = 3× 72.

Example 8.25 Find the prime factorization of 429.

Solution By the test for divisibility by three, we note that 3|429, so 429 = 3×143. By the
test for divisibility by eleven, we may determine that 11|143 and get 143 = 11× 13.
Answer: 429 = 3× 11× 13

Example 8.26 Find the prime factorization of 112.

Solution It is an even number, so we start the factorization tree by dividing it by 2.
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112

2 56

8

23

7

Answer: 112 = 24 × 7.

Example 8.27 Find the prime factorization of 242.

Solution

242

2 121

11 11

Answer: 242 = 2× 112.

Example 8.28 Find the prime factorization of 148.

Solution We observe that 4|148 and get 148 = 4×37. Here, we have to recall that 37 is a
prime number. This example illustrates that it is good to know the first few prime numbers.
Answer: 148 = 22 × 37.

8.6 More Properties of Divisibility

We learned several divisibility tests. Combining them, we can determine the divisibility by
some other numbers.

• If 2 and 3 divide a number, then 6 = 2× 3 also divides this number.

• If 4 and 3 divide a number, then 12 = 4× 3 also divides this number.

• At the same time, if 2 and 6 divide a number, this does not imply, in general, that
12 = 2 × 6 also divides this number. The simplest example is 6 itself: 2|6 and 6|6, but
12 6 | 6.

Question For what kind of numbers, r and k, does the following test for divisibility hold:
“If r and k divide a number, then r × k also divides this number?”

Answer We formulate the general rule.
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Let r and k be relatively prime. If r and k divide a number, then r × k also divides the
number.

Example 8.29 The numbers 4 and 7 are relatively prime. Any number that is divisible
by both of them is a multiple of 28.

Example 8.30 The numbers 4 and 10 are not relatively prime. It may happen that 4
and 10 divide a number, but 40 = 4× 10 does not. For example, take 20.

Example 8.31 Is the number 545436 divisible by 36?

Solution Note that 36 = 4 × 9 and 4 and 9 are relatively prime. If 4 and 9 divide a
number, then 36 also divides this number. We have 4|545436 (since 4|36) and 9|545436
(since 9|(5 + 4 + 5 + 4 + 3 + 6)).
Answer: Yes, 545436 is divisible by 36.

Example 8.32 Is the number 1210 divisible by 110?

Solution Note that 110 = 11 × 10. The numbers 11 and 10 are relatively prime. If 11
and 10 divide a number, then 110 also divides this number. We have 10|1210 and 11|1210
(actually, 112 = 121).
Answer: Yes, 110|1210.

As a final remark, we note that the other way of writing our statement is always true.

If n = r × k and n divides a number, then both r and k divide the number too.
(We do not need r and k to be relatively prime for this property.)

Example 8.33 Since 12|144, we have 2|144 and 6|144.

Example 8.34 We know that 24 divides a number N . What else divides N ?

Solution All the divisors of 24 divide N , that is, 1,2,3,4,6,8,12,24.
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8.7 Summary of Tests for Divisibility

• A number is divisible by 2 if and only if its ones digit is 0, 2, 4, 6, or 8.

• A number is divisible by 3 if and only if the sum of its digits is divisible by 3.

• A number is divisible by 4 if and only if the number represented by its last two
digits is divisible by 4.

• A number is divisible by 5 if and only if its ones digit is 0 or 5.

• A number is divisible by 6 if and only if it is divisible both by 2 and 3.

• A number is divisible by 8 if and only if the number represented by its last three
digits is divisible by 8.

• A number is divisible by 9 if and only if the sum of its digits is divisible by 9.

• A number is divisible by 10 if and only if its ones digit is zero.

• To find out whether a number is divisible by 11, complete the following steps.

Step 1. Break the digits of the number in two groups: the digits corresponding to
odd positions and the digits corresponding to even positions in the number.

Step 2. Find the sums A1 and A2 of all digits in each group.

Step 3. Find the absolute value of the difference A1−A2. If it is zero or divisible by
11, then the number is divisible by 11. Otherwise, it is not divisible by 11.

• A number is divisible by 12 if and only if it is divisible by both 4 and 3.

8.8 Exercises

8.8.1 The prime factorization

Exercise 8.1 Find the factorization trees.

(a) 36

(b) 64

(c) 102

(d) 1000

(e) 243

(f) 380

Exercise 8.2 Find the prime factorizations.
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(a) 26

(b) 30

(c) 12

(d) 28

(e) 55

(f) 45

(g) 49

(h) 81

(i) 120

(j) 150

(k) 39

(l) 65

(m) 64

(n) 90

(o) 935

8.8.2 Tests for divisibility

Exercise 8.3 Which of the following numbers are divisible by 11?

(a) 111

(b) 2222

(c) 33333

(d) 333333

(e) 88888888

(f) 1010

(g) 1001

(h) 110011

(i) 101010

(j) 100001

(k) 11011011

Exercise 8.4 Pick any three balloons. Are the numbers on them divisible by 2, 3, 4, 5,
6, 8, 9, 10, 11, or 12?

Exercise 8.5 What digit could replace � so that the number 12345�6 would be
divisible by 11?

Exercise 8.6 What digit could replace � so that the number 89567�2 would be
divisible by 4?

Exercise 8.7 True or false? Explain your answer if an argument is needed.
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(a) 3|9

(b) 3 is a divisor of 12

(c) 4 is a factor of 16

(d) 6 is a factor of 3

(e) 16 is a multiple of 4

(f) 12|6

(g) 11|11

(h) 1|11

(i) 11|1

(j) 6|0

(k) 0|5

(l) 9 is a prime factor of 18

(m) If 2|a, 6|a, then 12|a.

(n) If 6|ab, then 6|a or 6|b.

(o) If a counting number is divisible by 6 and 8, it must be divisible by 48.

(p) If a counting number is divisible by 8, it must be divisible by 4.

(q) If a counting number is divisible by 4, it must be divisible by 8.

(r) If a counting number is divisible by 9, it must be divisible by 3.

(s) If a counting number is divisible by 3 and 11, it must be divisible by 33.

(t) If a counting number is divisible by 2 and 4, it must be divisible by 8.

Exercise 8.8

(a) If 12 divides a, what else divides a?

(b) If 21 divides a, what else divides a?

Exercise 8.9 Prove without long computation that the following numbers are not
prime.

(a) 333333 (b) 4561234 (c) 2341110

Exercise 8.10 Find the numbers that are divisible by 3, but not by 9.

(a) 321

(b) 3456

(c) 234567

(d) 123456789

(e) 54321

(f) 456

Exercise 8.11 Find the numbers that are divisible by 4, but not by 8.
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(a) 1740

(b) 32

(c) 240

(d) 3560

(e) 5112

(f) 34012



9. THE NUMBER OF DIVISORS, GCF(a,b), AND LCM(a,b)

The greatest common factor of 60 and 48 is 12.

9.1 The Number of Divisors

Question How many different numbers divide a given counting number?

Answer If a number is small, this question can be answered by listing all divisors. Let us
look at examples.

Number List of divisors Number of divisors
5 {1,5} 2
6 {1,2,3,6} 4
8 {1,2,4,8} 4

24 {1,2,3,4,6,8,12,24} 8
37 {1,37} 2

100 {1,2,4,5,10,20,25,50,100} 9
2400 ??? ???

The last two examples show the disadvantages of the listing method.

• The list may be quite long.

• It is easy to miss a divisor.

• It is not clear how to check the completeness of the list.

110
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Luckily, there is a simple formula for the number of divisors of a given counting number. It
does not require listing all the divisors. All that we need to know is the prime factorization
of the counting number.

If the prime factorization of a number N is

N = pm1
1 · p

m2
2 . . .p

mk

k

then the number of divisors of N is

(m1 + 1)(m2 + 1) . . . (mk + 1)

The formula states that to find the number of divisors of N , we have to do the following
steps.

Step 1. Find the prime factorization of N .

Step 2. Take the exponents of primes in the prime factorization. Add 1 to each exponent.

Step 3. Multiply out the resulting numbers. This gives the answer.

Example 9.1 How many divisors does 12 have?

Solution The prime factorization of 12 is 12 = 22 × 31. The exponents of primes in
the prime factorization are 2 and 1. By the formula for the number of divisors, there are
(2 + 1)× (1 + 1) = 3× 2 = 6 divisors of 12.

Example 9.2 How many divisors does the number 36 have?

Solution The prime factorization of 36 is 36 = 22 × 32. The exponents of primes in
the prime factorization are 2 and 2. By the formula for the number of divisors, there are
(2 + 1)× (2 + 1) = 9 divisors of 36.

Example 9.3 We can re-establish the number of divisors of 100 found by the listing
method. The prime factorization of 100 is 100 = 22×52. By the formula for the number
of divisors, there are (2 + 1)× (2 + 1) = 9 divisors of 100.

Example 9.4 How many divisors does the number 18 have?

Solution The prime factorization 18 = 21 ×32 provides that there are (1 + 1)× (2 + 1) = 6
divisors of 18.
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Example 9.5 Find the number of divisors of the number 49.

Solution Since 49 = 72, the number 49 has 2 + 1 = 3 divisors.

Example 9.6 Let N = 119 × 25 × 191. How many divisors does the number N have?

Solution The prime factorization of N is already provided and the exponents of the
prime factors are 9, 5, and 1. By the formula for the number of divisors, there are (9 + 1) ×
(5 + 1)× (1 + 1) = 120 divisors of N .

Example 9.7 Let N = 45. How many divisors does the number N have?

Solution Note that 4 is not prime, so 45 is not the prime factorization. We first have to
rewrite N = 45 = (22)5 = 210. Hence there are 10 + 1 = 11 divisors of N .

9.2 Explanation of Formula for the Number of Divisors

There is an unspoken rule in mathematics: The best way to remember a formula and learn
its applications is to understand how the formula was deduced. In this section, we explain
the formula for the number of divisors. In particular, we will see why we add 1 to each
exponent in this formula.

All the divisors of 60.

The illustration shows all the divisors of the number 60. The prime factorization 60 =
3 × 22 × 5 is interpreted as a tower built of blocks corresponding to the prime numbers 3,
2, 2, and 5. Any divisor of 60 can be thought of as a tower built of several blocks from the
collection of two blocks 2, one block 3, and one block 5.

For example,
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• The divisor 6 = 213150 is built of one block of type 2, one block of type 3, and no blocks
of type 5.

• The divisor 20 = 223051 is built of two blocks of type 2, no blocks of type 3, and one
block of type 5.

• The divisor 1 = 203050 is built of zero blocks of type 2, zero blocks of type 3, and zero
blocks of type 5.

Suppose that we decided to build a divisor (tower). We have to choose how many blocks
of each type to use. First, we decide how many blocks of type 2 will be used. We have two
blocks of that type available, so we can use either both blocks (two), just one block (one), or
no block at all (zero), that is, we have three options.

Next, we have one block of type 3. We can either use this block (one) or not (zero), that is,
we have two options. The same is true for the block 5. We can use one or zero blocks of this
type, which gives us two options.

Finally, we multiply (three options for blocks of type 2) × (two options for blocks of type 3)
× (two options for blocks of type 5) = 3× 2× 5 = 12 ways to build a tower, which is the same
as 12 ways to build a divisor of 60.

This argument can be generalized to explain the formula for the number of divisors. If
we have m blocks of type p, we have (p + 1) options to pick some of them, including the
option of picking up no blocks of this type.

9.3 The Greatest Common Factor of Two Numbers

The greatest common factor and the least common multiple of two numbers describe rela-
tions between a and b, their divisors, and multiples. The commonly used abbreviations are
GCF(a,b) for the greatest common factor and LCM(a,b) for the least common multiple of a
and b.

We may not be even aware of that, but GCF(a,b) and LCM(a,b) are used in operations
with fractions. In particular, GCF(a,b) and LCM(a,b) are used to simplify and perform the
addition and multiplication of fractions in an efficient way. Operations with fractions will
be discussed in more detail later.

We will review the notion of the greatest common factor of two numbers a and b and
discuss the three ways to compute it.

1. The listing method based on the definition of GCF(a,b).

2. The prime factorization method.

3. The Euclidean algorithm.

After that we will review the notion of the least common multiple of two numbers a and b and
discuss the two ways to compute it.

1. The listing method based on the definition of LCM(a,b).

2. The prime factorization method.
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Let us start with GCF(a,b).

The greatest common factor of two counting numbers a and b is the largest counting
number that divides both a and b. It is denoted by GCF(a,b).

Remark Another commonly used name for the greatest common factor of two numbers
is the greatest common divisor and the notation gcd(a,b).

9.4 The Listing Method and Basic Properties of GCF(a,b)

Calculation of GCF(a,b) using the definition involves listing divisors of a and b and searching
for the largest common divisor in these two lists. This method works well in simple cases.

Example 9.8 Find GCF(10,6).

Solution The divisors of 10 are {1,2,5,10}, and the divisors of 6 are {1,2,3,6}. We see
that 2 is the largest common number of these two sets.

Answer: GCF(10,6) = 2.

Example 9.9 Find GCF(18,24) by using the definition of the greatest common factor
of two numbers.

Solution The divisors of 18 are 1, 2, 3, 6, 9, 18, and the divisors of 24 are 1, 2, 3, 4, 6, 8,
12, 24. We see that 6 is the largest common element.

Answer: GCF(18,24) = 6.

Example 9.10 Find the greatest common factors.

(a) GCF(3,6)

(b) GCF(100,100)

(c) GCF(2,15)

(d) GCF(6,60)

(e) GCF(9,12)

(f) GCF(13,26)

(g) GCF(8,27)

(h) GCF(125,3)

(i) GCF(1205,1)

Solution

(a) GCF(3,6) = 3

(b) GCF(100,100) = 100

(c) GCF(2,15) = 1

(d) GCF(6,60) = 6

(e) GCF(9,12) = 3

(f) GCF(13,26) = 13
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(g) GCF(8,27) = 1

(h) GCF(125,3) = 1

(i) GCF(1205,1) = 1

These examples lead to important and very useful observations.

If a|b, then GCF(a,b) = a.

For example, GCF(3,6) = 3, GCF(12,60) = 12, and GCF(13,26) = 13.

GCF(a,a) = a.

For example, GCF(100,100) = 100.

GCF(a,1) = 1 for any a.

For example, GCF(123406,1) = 1.

Note that GCF(2,15) = 1, GCF(8,27) = 1, and GCF(125,3) = 1 correspond to pairs of
numbers a and b that have no common divisors other than 1. We already mentioned these
pairs of counting numbers and a special name for them.

Two numbers a and b are relatively prime if and only if GCF(a,b) = 1.

Example 9.11 Find GCF(7,13), GCF(12,12000), and GCF(12345,1).

Solution 7 and 13 are prime numbers, so they are relatively prime. Hence GCF(7,13) =
1. Further, GCF(12,12000) = 12 since 12|12000, and GCF(12345,1) = 1.

9.5 The Prime Factorization Method for GCF(a,b)

In simple cases, we can find GCF(a,b) by the definition, basic properties, or by listing divisors
of a and b. However, it may not be an efficient way for large numbers. For example, how do
we find GCF(144,268) or GCF(756,210)? The lists of divisors may be quite long; it is easy to
make a mistake and miss some factors. For this reason it is important to know, in addition
to the definition, other methods for finding GCF(a,b).

In this section, we discuss the prime factorization method. The idea is to build GCF(a,b)
from prime factors that are common for a and b.
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Example 9.12 Find GCF(48,360).

Solution Using factorization trees, we can find the prime factorizations of the numbers
48 and 360:

48 = 24 × 31, 360 = 23 × 32 × 51

As any common divisor, GCF(48,360) is built from blocks, the prime factors that appear in
the prime factorization of both numbers 48 and 360. We want to use the maximal possible
number of common prime factors if we want to build the largest divisor. This means that
we will use 23 and 31 since they enter both decompositions. We will not use 5 to construct
GCF(48,360) since 5 does not enter the decomposition of 48. Thus,

GCF(48,360) = 23 × 3 = 24

Example 9.13 Find GCF(72,264).

Solution Using factorization trees, we can find the prime factorization of the numbers
72 and 264:

72 = 23 × 32, 264 = 23 × 3× 11

The common part of these two factorizations contains 23 and 31. Hence

GCF(72,264) = 23 × 3 = 24

Example 9.14 Find GCF(756,210).

Solution Using factorization trees, we can find the prime factorization of the numbers
756 and 210:

756 = 22 × 33 × 7, 210 = 2× 3× 5× 7

The common part of these two prime factorizations is as follows:

GCF(756,210) = 21 × 31 × 71 = 42

Example 9.15 Find the prime factorization of GCF(a,b) if

a = 210 × 3500 × 57 × 11203 × 136

b = 22 × 32 × 58 × 11204 × 1710

Solution We construct GCF(a,b) as the common part of the prime factorizations of a
and b:

GCF(a,b) = 22 × 32 × 57 × 11203
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More precisely, using that 170 = 130 = 1, we write a and b in the uniform way

a = 210 × 3500 × 57 × 11203 × 136 × 170

b = 22 × 32 × 58 × 11204 × 130 × 1710

and compare the exponents of prime factors for a and b. For each prime factor we choose the
smaller exponent (highlighted in blue).

Remark In Example 9.15, the numbers, including the answer GCF(a,b), are too large to
be calculated explicitly. We make the following convention: When the question of a problem
is “find GCF(a,b)” or “find the explicit value of GCF(a,b),” it is expected that the answer is
an explicit number. When the question of a problem is “find the prime factorization of
GCF(a,b),” it suffices to write the answer as a product of prime factors since, probably, it is
too large to be calculated explicitly.

Example 9.16 Find GCF(a,b) if

a = 27 × 315 × 72 × 11

b = 2× 510 × 7× 13

Solution We pick up a smaller exponent for each common prime factor in the decom-
positions of a and b to get

GCF(a,b) = 21 × 30 × 50 × 71 × 110 × 130 = 2× 7 = 14

Example 9.17 Find GCF(15,100) by using the prime factorization.

Solution Since 15 = 3× 5 and 100 = 22 × 52, we get GCF(15,100) = 20 × 30 × 51 = 5.

9.6 The Euclidean Algorithm for GCF(a,b)

Another powerful method for calculating GCF(a,b) uses division with remainder. The idea
is to replace a calculation of GCF(a,b) with large numbers a and b with a calculation of
GCF(b,r) with a “smaller” pair b, r. A sequence of such replacements reduces calculations
to a simple case that is easy to compute. This method of subsequent substitutions is called
the Euclidean algorithm. We first consider some examples illustrating the results produced at
each step of the algorithm. After that we explain how the results are obtained.

Example 9.18 We will see shortly that the Euclidean algorithm provides the following
sequence of equalities:

GCF(1827,36) = GCF(36,27) = GCF(27,9) = 9

which implies GCF(1827,36) = 9. In the sequence of equalities, within each subse-
quent GCF(a,b) are smaller and simpler numbers, until we get the very simple case
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GCF(27,9) = 9.

Example 9.19 We will apply the Euclidean algorithm to compute

GCF(97,89) = GCF(89,8) = GCF(8,1) = 1

and conclude that GCF(97,89) = 1.

The Euclidean algorithm is a straightforward method for finding GCF(a,b) based on di-
vision with remainder. We state the general formula and illustrate its applications by exam-
ples.

Euclidean algorithm. Let a > b be counting numbers. Then

GCF(a,b) = GCF(b,r)

where r is the remainder of the division of a by b

a = bq+ r, r < b < a

Remark Since a > b and b > r, the new pair (b,r) is “smaller” than the original one (a,b).

Example 9.20 Find GCF(1827,36) by using the Euclidean algorithm.

Solution We divide 1827 by 36 with remainder

1827 = 50× 36 + 27

You can use a calculator for this calculation if you do not feel confident enough to obtain an
answer by long division. Then GCF(1827,36)= GCF(36,27), and we replace (1827,36) with
(36,27). Next, we perform division with remainder for the new pair

36 = 1× 27 + 9

We write GCF(36,27)= GCF(27,9). At this point, we either note that GCF(27,9) = 9, and this
is the answer, or continue the division until we get zero as a remainder, which means the end
of the algorithm. The boxed divisor is the final answer:

27 = 3× 9 + 0(← STOP ),

GCF(1827,36) = 9

Here is the summary of all the steps of calculation. We suggest to organize solutions of other
problems in this form.

GCF(1827,36)
1827 = 50× 36 + 27 =GCF(36,27),
36 = 1× 27 + 9 =GCF(27,9),
27 = 3× 9 + 0(← STOP ) =9



Chapter 9. THE NUMBER OF DIVISORS, GCF(a,b), AND LCM(a,b) 119

Answer: GCF (1827,36) = 9.

Example 9.21 Find GCF(97,89).

Solution
GCF(97,89)

97 = 1× 89 + 8 =GCF(89,8),
89 = 11× 8 + 1 =GCF(8,1),
8 = 8× 1 + 0(← STOP ) =1

Answer: GCF (97,89) = 1.

Example 9.22 Find GCF(246,30).

Solution
GCF(246,30)

246 = 8× 30 + 6 =GCF(30,6),
30 = 5× 6 + 0(← STOP ) =6

Answer: GCF (246,30) = 6.

Example 9.23 Find GCF(546,390).

Solution
GCF(546,390)

546 = 1× 390 + 156 =GCF(390,156),
390 = 2× 156 + 78 =GCF(156,78),
156 = 2× 78 + 0(← STOP ) =78

Answer: GCF (546,390) = 78.

Example 9.24 Find GCF(271,101).

Solution
GCF(271,101)

271 = 2× 101 + 69 =GCF(101,69)
101 = 1× 69 + 32 =GCF(69,32)
69 = 2× 32 + 5 =GCF(32,5)
32 = 6× 5 + 2 =GCF(5,2)
5 = 2× 2 + 1 =GCF(2,1)
2 = 2× 1 + 0(← STOP ) =1

Answer: GCF (271,101) = 1.
In this example, we went through all the steps of the Euclidean algorithm until we got

zero as a remainder. Certainly, if the value of GCF(a,b) is obvious at an intermediate step (for
example, it is clear that GCF(32,5) = 1), one can stop there and use this value as an answer.
In such cases, there is no need to proceed further until the zero remainder.
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9.7 The Least Common Multiple of Two Numbers

The notion of the least common multiple of two numbers is similar to the notion of the
greatest common factor. The similarity of the notions often leads to confusion.

The least common multiple of two counting numbers a and b is the smallest number
that is a multiple of both a and b. It is denoted by LCM(a,b).

Example 9.25 From the definition it is clear that LCM(3,6) = 6, LCM(6,9) = 18, and
LCM(10,15) = 30.

Let us compare the notions of GCF(a,b) and LCM(a,b) for a = 24 and b = 36. For this
purpose we make the lists of all divisors and all multiples of each number.

List 1(a) Divisors of a = 24: {1,2,3,4,6,8,12,24}. This set is finite.

List 2(a) Multiples of a = 24: { 24, 48, 72, 96,. . . }. This set is infinite.

List 1(b) Divisors of b = 36: { 1,2,3,4,6,9,12,18,36 }. This set is finite.

List 2(b) Multiples of b = 36: {36, 72, 108, 144,. . . }. This set is infinite.

Recall that List 1(a) and List 1(b) are used to find GCF(24,36). By definition, GCF(24,36)
is the largest common number in List 1(a) and List 1(b), that is, 12.

Accordingly, List 2(a) and List 2(b) are used to find LCM(24,36). By definition, LCM(24,36).
is the smallest common number in List 2(a) and List 2(b), that is, 72. Also note that the names
of GCF(a,b) and LCM(a,b) prompt us to take the greatest element or the least element and
infinite sets of multiples have no “greatest” elements.

9.8 The Listing Method and Basic Properties of LCM(a,b)

Example 9.26 Find LCM(15,25).

Solution We list the first few multiples of each number and mark the first common
element of both sets.

Multiples of 15: {15, 30, 45, 60, 75 , 90, 105, 120, 135, 150, . . . }

Multiples of 25: {25, 50, 75 , 100, 125, 150, . . . }

Answer: LCM(15,25) = 75.

Remark 150 is also a common multiple, but it is not the smallest common multiple.

Example 9.27 Find LCM(12,20).

Solution We list multiples of 12 and 20.
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Multiples of 12: 12, 24, 36, 48, 60 , 72, . . .

Multiples of 20: 20, 40, 60 , 80, . . .

Answer: LCM(12,20) = 60.

Let us look at the basic properties of the least common multiple of two numbers.

Example 9.28 It is easy to see that

LCM(3,6) = 6, LCM(25,100) = 100, and LCM(4,8) = 8.

If b is a multiple of a, then LCM(a,b) = b.

Example 9.29 It is clear that LCM(1,15) = 15.

LCM(1, a) = a.

Example 9.30 Using the listing method, we find that

LCM(3,5) = 15, LCM(4,7) = 28, and LCM(4,9) = 36.

Note that 3× 5 = 15, 4× 7 = 28, and 4× 9 = 36.
The following statement generalizes the last example.

If a and b are relatively prime, then LCM(a,b) = a× b.

Remark It can be proved that the other way is also true: if a and b are not relatively
prime, then LCM(a,b) , a× b. We will see examples in the next section.

9.9 The Prime Factorization Method for LCM(a,b)

While no reasonable analogue of the Euclidean algorithm exists for LCM(a,b), we do have a
prime factorization method similar to that for GCF(a,b).

Example 9.31 Find LCM(12,39).

Solution The numbers 12 and 39 are not relatively prime, so the product 12× 39 cannot
be the answer. The listing method does not seem very efficient here.
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Multiples of 12: 12, 24, 36, 48, 60, 72, 84, 96, . . .

Multiples of 39: 39, 78, 117, 156, . . .

We have a rather long list of multiplies, but we have not yet reached a common multiple!
Luckily for us, there exists another way to find LCM(12,39). Using the prime factorizations

of the numbers 12 and 39, we find

12 = 22 × 3, 39 = 3× 13

A common multiple should contain both numbers 12 and 39, so it should be constructed
from the prime factors of 12 and 39. These factors should be used in sufficient, but least
necessary quantities. Hence we construct LCM(12,39) as the product of several copies of 2,
3, and 13 taking the largest available exponent (highlighted in blue) for each prime factor

12 = 22 × 31 × 130

39 = 20 × 31 × 131

Answer: LCM(12,39) = 22 × 31 × 131 = 156.

Example 9.32 Find LCM(36,24).

Solution Using the prime factorizations

36 = 22 × 32

24 = 23 × 31

we find LCM(36,24) = 23 × 32 = 8× 9 = 72.

Example 9.33 Find LCM(15,40).

Solution Using the prime factorizations

15 = 3× 5 = 20 × 31 × 51

40 = 23 × 5 = 23 × 30 × 51

we find LCM(15,40) = 23 × 31 × 51 = 120.

Example 9.34 Find the prime factorization of LCM(a,b) if

a = 32 × 75 × 1110 × 132 × 19100

b = 23 × 34 × 72 × 1112 × 13

Solution We construct LCM(a,b) from prime factors, using for each of them the largest
exponent of two available:

LCM(a,b) = 23 × 34 × 75 × 1112 × 132 × 19100

(The number is too large to be calculated explicitly.)
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9.10 Summary

We can construct GCF(a,b) and LCM(a,b) based on the prime factorizations of a and b. For
GCF(a,b), we take the smaller exponent for each factor that appears in the prime factoriza-
tions of of a and b. For LCM(a,b), we take the larger exponent for each factor in these two
prime factorizations. GCF(a,b) can be calculated from the definition (by the listing method),
the prime factorization, or the Euclidean algorithm. For LCM(a,b), we use the listing method
that follows from the definition and the prime factorization method.

9.11 Product of GCF(a,b) and LCM(a,b)

We conclude this chapter with a nice fact concerning GCF(a,b) and LCM(a,b).

Example 9.35 Let a = 8 and b = 6. Find

(a) a× b

(b) GCF(a,b)×LCM(a,b)

Solution

(a) a× b = 8× 6 = 48

(b) GCF(a,b)×LCM(a,b) = 2× 24 = 48.

We got the same answer to both questions, and this is no coincidence.

GCF(a,b)×LCM(a,b) = a× b for any counting numbers a and b.

This statement is justified by the prime factorization method. We illustrate the idea of
the proof by the example.

Example 9.36 Let

a = 25 × 32 × 5

b = 23 × 34 × 72

Show that GCF(a,b)×LCM(a,b) = a× b.

Solution We have

a× b = 25 × 32 × 5× 23 × 34 × 72 = 28 × 36 × 5× 72

To construct LCM(a,b), we pick up the larger exponents (highlighted in blue):

a = 25 × 32 × 51

b = 23 × 34 × 72
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Then
LCM(a,b) = 25 × 34 × 51 × 72

The exponents that have not been picked up are exactly the “smaller” ones. They are used
in GCF(a,b):

GCF(a,b) = 23 × 32

Then it is clear that

LCM(a,b)×GCF(a,b) = 25 × 34 × 51 × 72 × 23 × 32 = 28 × 36 × 5× 72 = a× b

9.12 Exercises

9.12.1 The number of divisors

Exercise 9.1 Find the prime factorizations. List all the prime divisors. Find the num-
ber of different divisors.

(a) 630 (b) 144 (c) 28

Exercise 9.2 Find the number of different divisors.

(a) 25 · 57 · 139 (b) 11 · 314 · 219

9.12.2 Properties of GCF(a,b)

Exercise 9.3 Explain the meaning of GCF(a,b).

Exercise 9.4 Find the greatest common factors using the definition or basic properties
of GCF(a,b).

(a) GCF(3,9)

(b) GCF(2,10)

(c) GCF(2,15)

(d) GCF(200,200)

(e) GCF(13,17)

(f) GCF(6,60)

(g) GCF(10,15)

(h) GCF(1,13)

(i) GCF(7,49)

(j) GCF(6,12)

(k) GCF(4,6)

(l) GCF(2,13)

(m) GCF(2,4)

(n) GCF(5,12)

(o) GCF(9,12)

(p) GCF(3,6)

(q) GCF(7,70)

(r) GCF(1,213)

(s) GCF(2,3)

(t) GCF(7,11)

(u) GCF(4,7)

(v) GCF(7,25)

(w) GCF(8,27)

(x) GCF(12,18)

(y) GCF(10,30)
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Exercise 9.5 Find the greatest common factors using the Euclidean algorithm.

(a) GCF(25,3)

(b) GCF(7,29)

(c) GCF(999,30)

(d) GCF(13,49)

(e) GCF(27,18)

(f) GCF(125,15)

(g) GCF(27,25)

(h) GCF(60,45)

(i) GCF(100,15)

(j) GCF(24,54)

(k) GCF(39,91)

(l) GCF(72,160)

Exercise 9.6 Find the exact values of the greatest common factors using the prime
factorization method.

(a) GCF(8,18)

(b) GCF(24,66)

(c) GCF(30,45)

(d) GCF(12,6)

(e) GCF(12,81)

(f) GCF(45,120)

Exercise 9.7 Find the exact values of the greatest common factors GCF(a,b) for a =
25 · 57 · 139 and b = 11 · 314 · 219.

Exercise 9.8 Find the greatest common factors using any method.

(a) GCF(51,85) (b) GCF(385,42) (c) GCF(117,195)

9.12.3 Properties of LCM(a,b)

Exercise 9.9 Explain the meaning of LCM(a,b).

Exercise 9.10 Find the least common multiples using the definition or basic proper-
ties of LCM(a,b).

(a) LCM(4,8)

(b) LCM(3,6)

(c) LCM(2,5)

(d) LCM(9,6)

(e) LCM(4,6)

(f) LCM(1,13)

(g) LCM(5,7)

(h) LCM(2,139)

Exercise 9.11 Find the exact values of the following least common multiples using
the prime factorization method.

(a) LCM(99,2100)

(b) LCM(30,45)

(c) LCM(12,39)

(d) LCM(12,81)

(e) LCM(45,120)
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Exercise 9.12 Find the prime factorization of the least common multiple of the num-
bers a = 25 · 57 · 139 and b = 11 · 314 · 219.



10. WORLD OF REAL NUMBERS

Integer, rational, and irrational numbers.

10.1 Introduction

In this chapter, we are going to expand our world of numbers. Until now, most of our dis-
cussions were related to the set of whole numbers {0,1,2,3, . . . }. On some occasions, we talked
about negative numbers (such as −7, −1) or fractions (such as 1/3, 2/5). In this chapter, we
review numbers of different types and discuss how they belong to the world of real numbers.

10.2 Counting, Whole, Negative, and Integer Numbers

Recall that we started with the set of counting numbers {1,2,3,4, . . . }. We observed that this
set is closed under the operations of addition and multiplication. If we include zero in the list,
we get the set {0,1,2,3, . . . } of whole numbers that has the same closure property.

We also discussed that the subtraction operation takes us out of the world of whole num-
bers. For example, the result of the subtraction 3−5 is not in the set of whole numbers. This
motivates us to introduce negative numbers {−1,−2,−3, . . . }. Together with whole numbers,
they create the set of integers {· · · − 3,−2,−1,0,1,2,3, . . . }. The integers are often represented
by a discrete set of points on a line.

127
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10.3 Rational Numbers

Note that the set of integers is closed under the operations of addition, multiplication, and sub-
traction. Yet, we know that it is not closed under division, for example, 1÷3 is not integer. This
leads to the further expansion of our number world to the set of rational numbers

1
5
,

7
20
,
−17
55

,
8
3
, . . .

A rational number is a pair of two integers a and b with b , 0 written in the form
a
b

.

We know how to add, subtract, multiply, and divide rational numbers. We will review
the arithmetic operations with fractions in Chapter 11. For the moment, we just take a
note that the set of rational numbers is closed under the operations of addition, subtraction,
multiplication, and division by nonzero rational numbers.

The same rational number can be represented by many different fractions.

10.4 Simplest Form of Fractions

The tricky part about rational numbers is that the same rational number can be represented
by different pairs of integers. For example,

1
3

=
2
6

=
10
30

=
5

15
= . . .

Usually, we work with the simplest form of a fraction.

Let a and b be two counting numbers. We say that the fraction
a
b

is in simplest form if

a and b are relatively prime.
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Remark

1. If we allow a or b to be a negative integer, not just a counting number, we have to
adjust slightly the notion of relatively prime numbers since we introduced it only for
counting numbers. It is done in the simplest way. We say that two integers are relatively
prime if their absolute values are relatively prime. Then a negative rational number a/b
is in the simplest form if a < 0, b > 0, and a and b are relatively prime.

2. In some textbooks, fractions in simplest form are called fractions in lowest terms, frac-
tions in reduced form or reduced fractions.

Example 10.1 The fractions
1
3

,
2
5

, and
4
9

are in simplest forms. The fractions
3

15
,

4
18

,

and −2
6

are not in simplest form.

Example 10.2 Is the fraction
42
48

in simplest form?

Solution No, since 42 and 48 are not relatively prime. To put a fraction
a
b

in simplest

form, we have to divide the numerator and the denominator of the fraction by their greatest
common factor GCF(a,b)

42 = 2× 3× 7, 48 = 24 × 3, GCF(42,48) = 2× 3 = 6
42
48

=
7× 6
8× 6

=
7
8

Since 7 and 8 are relatively prime,
7
8

is the simplest form of
42
48

.

The simplest form can be used to establish equality of two fractions.

Two fractions
a
b

and
c
d

are equal if and only if they have the same simplest form.

Recall another way to check whether two fractions represent the same rational number.

Two fractions
a
b

and
c
d

are equal if and only if ad = bc.

10.5 Inclusions of Sets of Numbers
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Any integer is a rational number because an integer a can be written in the form
a
1

:

3 =
3
1
, −5 =

−5
1

=
−10

2
, . . .

Using the symbol ⊂ for inclusion of sets, we can write the following sequence of inclusions
of number sets.

counting numbers ⊂ whole numbers ⊂ integers ⊂ rational numbers

10.6 Rational Numbers on Line

If we mark all rational numbers on the same line, where we already placed integers, the
rational numbers present an infinite set of points spread everywhere on the line.

The word everywhere literally means that, in every tiny segment of the line, there are (in-
finitely many) rational numbers.

Between any two rational numbers, one can find another rational number.

For example, the average of two rational numbers is again a rational number and stands
exactly in the middle between them.

Example 10.3 Between
1
4

and
3
4

there is the rational number
1
2

1
4
<

1
2
<

3
4

This follows from the fact that
1
2

is the average of these two numbers.

1
2
×
(1

4
+

3
4

)
=

1
2
× 4

4
=

1
2
× 1 =

1
2

Between the fractions
3
8

and
3
4

, we can find their average, the rational number
9

16
.

1
2
×
(3

8
+

3
4

)
=

1
2
×
(3

8
+

6
8

)
=

1
2
× 9

8
=

9
16
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3
8
<

9
16

<
3
4

Note that we can continue inserting more and more rational numbers between the new
averages. This shows us:

Between any two rational numbers, one can find infinitely many rational numbers.

In other words, rational numbers are spread densely everywhere on the number line.

10.7 Irrational Numbers

Since rational numbers are spread everywhere on the line, it may appear that every point
of the line corresponds to some rational number. People thought in this way for a while.
They thought that rational numbers were the only numbers. Eventually, mathematicians of
Ancient Greece realized that there are numbers that cannot be rational. For example, there

exists a short and elegant proof that
√

2 is not rational, it cannot be written as
a
b

with integers

a and b. (Note that we do encounter
√

2 in real life, for example, as the length of the diagonal
of a unit square, so it is a very concrete and useful number.)

Thus, to some extent contrary to our intuition, rational numbers are dense everywhere,
but there are gaps between them. There are points on the line that do not correspond to
any rational numbers. These points are called irrational numbers. A careful and consistent
introduction to all kinds of numbers is a topic of very advanced math courses. In our course,
we just take an irrational number to be a number that is not rational.

An irrational number cannot be represented as
a
b

with integers a and b, b , 0.

Example 10.4 From previous experience we know examples of irrational numbers
√

2, π,
√

3, 3
√

25

Remark The presence of the radical symbol √ in an expression does not necessarily
mean that the expression is an irrational number. Sometimes, it can be simplified and turns
out to be a rational number.

Example 10.5 The number
√

4 is rational despite the symbol √ .

√
4 =
√

22 = 2

It is an integer (we already mentioned that integers are rational numbers).
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10.8 Real Numbers

In summary, we have numbers of two types on the number line.

• Numbers that can be written in the form
a
b

with integers a and b , 0. We call them

rational numbers.

• Numbers that cannot be written in the form
a
b

with integers a and b , 0. We call them

irrational numbers.

All together, they create the set of all numbers that correspond to all points on the line,
called the set of real numbers.

The inclusions of the above-mentioned sets look like

counting numbers ⊂ whole numbers ⊂ integers ⊂ rational numbers ⊂ real numbers

and, separately,

irrational numbers ⊂ real numbers

Another way to represent these relations is to use the Venn diagram
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We note that the set of real numbers is closed under addition, subtraction, multiplication, and
division by nonzero numbers.

Example 10.6 Which of the following numbers are whole, integer, rational, or irra-
tional?

(a) 5

(b) 0

(c) −7

(d)
1
2

(e) 0.5

(f) 12

(g)
√

2

(h) 1.2

(i) −7
√

3

(j)
6
2

(k) π

(l)
√

9

(m) −
√

4

Solution Note that
6
2

= 3,
√

9 = 3, and −
√

4 = −2. Then

• whole numbers: 5, 0, 12,
6
2

= 3,
√

9 = 3

• integer numbers: all of the above and −7, −
√

4

• rational numbers: all of the above and
1
2

, 0.5 =
1
2

, 1.2 =
12
10

• irrational numbers: only −7
√

3, π,
√

2

10.9 Decimals

It turns out that the distinction between rational and irrational numbers is related to the
decimal representation of real numbers.

Any real number can be written in decimal form. In particular, any rational number
can be written in two ways: as a fraction and as a decimal.

Example 10.7 Here are examples of the decimal representation of rational numbers:

1
10

= 0.1,
1
4

= 0.25

We often use decimals (such as 7.35, −567.145, 0.25, 800.01) in our daily life, especially
since standard calculators work with the decimal representation of numbers. Let us take a
closer look at the meaning of decimals.

Question What does the expression 132.54 mean?
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Answer The answer becomes immediately clear when we recall our discussion on the
decimal system in Chapter 7. Recall that 132 encodes the expanded form of the number 132
in powers of 10.

132 = 1× 102 + 3× 101 + 2× 100

Similarly, the fractional part of 132 encodes the expanded form of this part in negative powers
of 10.

132.54 = 1× 100 + 3× 10 + 2× 1 + 5× 1
10

+ 4× 1
100

= 1× 102 + 3× 101 + 2× 100 + 5× 10−1 + 4× 10−2

In summary, the decimal representation of a real number encodes the expanded form of the
number in powers of 10 (including negative powers, if necessary).

. . .1000, 100, 10, 1,
1

10
,

1
100

,
1

1000
, . . .

At the end of this chapter, we discuss advantages and disadvantages of the decimal repre-
sentation of rational numbers over the representation in the form of a fraction.

10.10 Conversion from Fractions to Decimals

Example 10.8 What decimals correspond to the fractions
1
2

,
1
5

, and
3

20
?

Solution
1
2

= 0.5,
1
5

= 0.2, and
3

20
= 0.15.

This example is not difficult, but we can ask the more general question.

Question How does one convert a fraction to decimal form?

Answer In practice, we use a calculator (probably, it is the most common computation
performed on calculators). Without a calculator, this would be a result of long division.

Example 10.9 What is the decimal form of
1
8

?

Solution Using long division, we find

8 1.000
0.125

8
20
16
40
40

0
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Answer:
1
8

= 0.125.

10.11 Nonterminating Decimal Representation

Example 10.10 What is the decimal form of
1
3

?

Solution Using long division, we find

0. 3 3 3 3 · · ·
3
)

1. 0 0 0 0 · · ·
0. 9

1 0
0 9

1 0
0 9

1 0
0 9

1
. . .

We see that
1
3

has the nonterminating decimal representation

1
3

= 0.33333 . . .

The long division process shows that division gets into a loop and the true value of the

decimal representation of
1
3

consists of infinitely many digits 3 placed after the decimal

point. Note that no matter how many digits for the division 1/3 are displayed on a calculator,
there still be only finitely many of digits and the result on a calculator is an approximation of

the real value of
1
3

:

1
3
, 0.33333 . . .3︸         ︷︷         ︸

if finitely many digits

There is a convention to write infinite decimals by using the bar over the repeated periodic
pattern.

1
3

= 0.3 = 0.33333 . . .︸       ︷︷       ︸
infinitely many digits
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Example 10.11 Using a calculator, we can find

7
15

= 0.46666 . . . = 0.46

1
14

= 0.07142857142 . . . = 0.0714285

3
128

= 0.234375 (terminating, finite number of digits)

It is a good time to discuss the results of division on a calculator. Any calculator has only
a finite number of spaces for digits to display the result, so it always gives only the first few
digits of the decimal representation, even when the true representation is infinite. In this
case, how do we tell whether all the digits of the result are displayed on the calculator or it
is just an approximation to the true value? For example, if we see

2
7

= 0.28571428571

on the display, is this the true value of
2
7

or just the first few digits of an infinite decimal?

And, if there are infinitely many digits, do they go in a repetitive pattern?

It turns out that the decimal representation of
2
7

is infinite periodic:

2
7

= 0.285714

On the contrary, the decimal
31

1024
= 0.0302734375

obtained by a calculator is the exact value. In this case, the decimal representation of
31

1024
is terminating. It has exactly these finitely many digits.

Decimal representations of real numbers.
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10.12 Types of Decimal Presentations of Real Numbers

We stated above that every real number has a decimal form. We can divide all real numbers
into three types according to their decimal representation.

(A) Terminating decimals. These decimals have a finite number of nonzero digits after the
decimal point.

(B) Repeating nonterminating decimals. These decimals have infinitely many nonzero digits
after the decimal point that repeat in periodic pattern.

(C) Nonrepeating nonterminating decimals. These decimals have infinitely many nonzero
digits after the decimal point and the digits do not create a periodic repetitive pattern.

Example 10.12

(A) The decimals 0.57, 12.456, and −310.48 are terminating.

(B) The decimals 0.3 = 0.333 . . . , 12.456 = 12.456666 . . . , and 0.123 = 0.123123123 . . .
are repeating nonterminating.

(C) The decimal whose digits form a row of all consecutive counting numbers

0.1234567891011 . . .

is a nonrepeating nonterminating decimal; its digits do not create a repetitive
period. Also, it is not easy to prove, but is well known that the decimal represen-
tations of the irrational numbers

√
2 and π are of this type.

Question Is it possible to figure out the type of a decimal representation just by looking
at the number, without actually converting it to a decimal?

Answer Yes, it is possible, and here is the rule. First of all, it is known that irrational
numbers are exactly the real numbers that have type (C) decimal representation.

Irrational numbers have decimal representations of type (C). Rational numbers have
decimal representations of type (A) or (B).
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Thus, all rational numbers (fractions whose numerators and denominators are integers)
have a terminating or repeating nonterminating representation. Next, we would like to ask
about distinction between types (A) and (B).

Question How does one distinguish fractions with decimal representations of type (A)
from fractions with decimal representations of type (B)?

Answer Let us try to guess a rule from the examples in the table below. The left column
contains examples of rational numbers admitting terminating decimal representations (type
(A)). The right column contains examples of rational numbers admitting (nonterminating
periodic) decimal representations (type (B)).

Type (A) Type (B)
terminating decimal form repeating nonterminating decimal form

1
24

7
23 × 5

17
100

1
3

3
7

17
99

3
20

13
24 × 56

27
400

7
12

3
28

1
13× 22

121
27 × 564

9
543

137
218

137
218 × 7

121
24 × 56 × 35

9
543 × 312

Can you guess the rule that distinguishes these two groups of numbers? The answer may
be not evident, but here is a clue: look at the prime factorizations of the denominators.
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Type (A) Type (B)
terminating decimal form repeating nonterminating decimal form

1
24

7
23 × 5

17
100

1
3

3
7

17
99

3
20

13
24 × 56

27
400

7
12

3
28

1
13× 22

121
27 × 564

9
543

137
218

137
218 × 7

121
24 × 56 × 35

9
543 × 312

Note that the denominators of the fractions in the left column (type (A)) have only 2 and 5 in
their prime factorizations, whereas for each fraction in the right column (type (B)) we have
another factor, different from 2 and 5. The rule can be formulated as follows.

If the denominator of the simplest form of a fraction representing a rational number
contains only 2 and 5 in its prime factorization, then the rational number has a terminat-
ing decimal form. Otherwise, it has a repeating nonterminating decimal form.

Thus, to determine whether a fraction has a decimal representation of type (A) or (B), we
complete the following steps.

Step 1. Find the simplest form
a
b

of a given fraction.

Step 2. Find the prime factorization of the denominator b.
Case 1. The prime factorization of b contains only powers of 2 and 5. Then

the rational number is of type (A) (a terminating decimal).
Case 2. The prime factorization of b contains factors other than 2 and 5. Then

the rational number is of type (B) (a nonrepeating and nonterminating decimal).

Example 10.13 Which of the following rational numbers have terminating decimal
representations?

(a)
4
3

(b)
7
8

(c)
7

24

(d)
11

2100 × 5100

(e)
121

1320 × 22 × 53

(f)
3

15

(g)
39
60

Solution The rational numbers
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(a)
4
3

(c)
7

24
=

7
23 × 3

(e)
121

1320 × 22 × 53

have the repeating nonterminating decimal representation of type (B) since they are written
in simplest form and the denominators have factors other than 2 or 5.

The rational numbers

(b)
7
8

=
7
23

(d)
11

2100 × 5100

are in simplest form with denominators containing only powers of 2 and 5, so they have the
terminating decimal representation of type (A).

The fractions
3

15
and

39
60

are not in simplest form, so we must simplify them first.

(f)
3

15
=

1
5

(g)
39
60

=
13
20

=
13

22 × 5
Both fractions have the terminating decimal form.

Example 10.14 The result of a computation on a calculator is displayed as

1
12

= 0.833333

Is this the exact value of
1

12
?

Solution No, it is not an exact value, but only an approximation by the first few digits of

the true decimal representation. The rational number
1

12
has the repeating nonterminating

decimal representation, so its true decimal representation is infinite. One can find that
1

12
= 0.83

Example 10.15 The result of a computation on a calculator is displayed as

1
11

= 0.090909

What is the true decimal representation of
1

11
?
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Solution The decimal representation of
1

11
is infinite periodic. From the result of a

computation on a calculator it is easy to guess the period:
1

11
= 0.09.

Example 10.16 The result of a computation on a calculator is displayed as

3
7

= 0.42857142857

What is the true decimal representation of
3
7

?

Solution The decimal representation of
3
7

is infinite periodic. From the first few digits

provided by the result of calculation we can guess the repeating pattern
3
7

= 0428571.

Example 10.17 Let

N =
1

1× 2× 3× 4× 5× 6× 7
A calculator helps us to find the value

1
1× 2× 3× 4× 5× 6× 7

= 0.000198412698

(a) Is N a rational number?

(b) Is the value provided by the calculator exact of approximate?

Solution

(a) Yes, N has the form
a
b

, where both a = 1 and b = 1× 2× 3× 4× 5× 6× 7 are integers.

(b) The result of a computation on a calculator is not an exact value of N in the decimal
form. The prime decomposition of the denominator of N would contain other factors
besides 2 and 5, so the decimal representation of N is repeating nonterminating. On
calculator’s display, we got only the first few of infinitely many digits.

10.13 Conversion from Decimals to Fractions

We discussed the conversion from rational numbers to decimals in detail. Now, we address
the question.

Question How does one recover a fraction from a decimal?

In some cases, it is not difficult since we remember from our experience the decimal
values of some fractions.
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Example 10.18 Recall that

0.5 =
1
2
, 0.3 =

1
3
, 0.25 =

1
4
, 0.1 =

1
10
, 0.75 =

3
4

There are two basic rules of conversion from decimals into fractions. First, we will discuss
these rules and apply them in simple cases. After that we will look at more complicated
situations.

10.13.1 Conversion from terminating decimals to fractions

Let us write a decimal of type (A) in the form

0.a1a2a3 . . . ak , ak , 0

Here, we mean that there are k digits a1, a2, . . . , ak after the decimal point and the last digit
ak is nonzero. Then we write

0. a1a2a3 . . . ak
kdigits

=
a1a2a3 . . . ak

10k

where the numerator is an integer, a k-digit number with digits a1, a2, . . . , ak . We simplify the
fraction to get a final result. The rule becomes clear when we consider examples.

Example 10.19

(a) 0. 18
2digits

=
18

100
102

=
9

50

(b) 0. 5
1digit

=
5

10
101

=
1
2

(c) 0. 018
3digits

=
18

1000
103

=
9

500

(d) 0. 25
2digits

=
25

100
102

=
1
4

(e) 0. 121
3digits

=
121

1000
102

10.13.2 Conversion from repeating nonterminating decimals to fractions

Let us consider the simplest case of a decimal of type (B)

0.a1a2a3 . . . ak

where the periodic pattern starts right after the decimal point and consists of k digits. Then
we write

0. a1a2a3 . . . ak
kdigits

=
a1a2a3 . . . ak

99 . . .9
k−digit number
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where the numerator is an integer, a k-digit number with digits a1, a2, . . . , ak , and the denom-
inator is the integer made out of k digits 9. We simplify the fraction to get a final result. Here
are some examples.

Example 10.20

(a) 0. 3
1digit

=
3
9

=
1
3

(b) 0. 6
1digit

=
6
9

= 2/3

(c) 0. 36
2digits

=
36
99

=
4

11

(d) 0. 003
3digits

=
3

999
=

1
333

(e) 0. 120
3digits

=
120
999

=
40

333

(f) 0. 17
2digits

=
17
99

10.13.3 Combination of two rules

Two basic rules are combined to convert more complicated decimals to fractions.

Example 10.21 Convert 0.03 to a fraction.

Solution Note that this example is different from the examples in the previous section
since the periodic pattern starts from the second place after the decimal point. Yet, we can
reduce this case to the previous problem because

0.03 = 0.033333 · · · = 1
10
× 0.33333 =

1
10
× 0.3

Observe that 0.3 is the case considered in the previous section (the periodic pattern starts

right after the decimal point) and we know that 0.3 =
1
3

. Hence

0.03 =
1

10
× 0.3 =

1
10
× 1

3
=

1
30

Answer: 0.03 =
1

30
.

Example 10.22 Convert 0.002 to a fraction.

Solution Note that

0.002 = 0.002222 · · · = 1
100
× 0.222 · · · = 1

100
× 0.2

Then 0.2 is the case considered in the previous section (a periodic pattern starts right after

the decimal point) and we find 0.2 =
2
9

. Hence

0.002 =
1

100
× 0.2 =

1
100
× 2

9
=

2
900

=
1

450
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Answer: 0.002 =
1

450
.

Example 10.23 Convert 0.017 to a fraction.

Solution We know that 0.17 =
17
99

. Then

0.017 =
1

10
× 0.17 =

1
10
× 17

99
=

17
990

Answer: 0.017 =
17

990
.

Next example illustrates how to handle even more complicated cases.

Example 10.24 Convert 0.116 to a fraction.

We show two ways to solve this problem.
Solution 1 We split the number into two parts (finite and infinite periodic), convert

each part to a fraction, add the results, and simplify. More precisely,

0.116 = 0.116666 · · · = 0.11 + 0.006

For the finite part we have

0.11 =
11

100

For the infinite part we have

0.006 =
1

100
× 0.6 =

1
100
× 6

9
=

1
150

Finally,

0.116 = 0.11 + 0.006 =
11

100
+

1
150

=
33

300
+

2
300

=
35

300
=

7
60

Answer: 0.116 =
7

60
.

Solution 2 Let x be the fraction with the decimal representation 0.116. Then we can
write

x = 0.11666 . . .

10x = 1.16666 . . .

10x − x = 1.16666 · · · − 0.11666 · · · = 1.0500 · · · = 1.05

9x =
105
100

x =
105
900

=
7

60

Answer: 0.116 =
7

60
.
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Example 10.25 Convert 0.18, 0.18, and 0.18 to fractions.

Solution

0.18 =
18

100
=

9
50
,

0.18 = 0.181818... =
18
99

=
2

11
,

0.18 = 0.1 + 0.08 =
1

10
+

1
10
× 0.8 =

1
10

+
1

10
× 8

9
=

9 + 8
90

=
17
90

10.14 Decimal Representation of a Fraction is Not Unique

Note that there is a freedom in the choice of the period of a nonterminating periodic decimal.
For example,

0.3 = 0.33 = 0.333 = 0.3333 . . .

We would like to mention one more interesting fact that reveals the sophisticated nature of
decimals.

Example 10.26 Convert 0.9 to a fraction.

Solution Using the standard rule, we get

0.9 =
9
9

= 1

Thus,
1 = 0.9999999 . . . !

This may look strange, since we know that 1 > 0.9, and 1 > 0.99, and 1 > 0.999, and so on.
The same is true for any decimal 0.99...9 made of any finite number digits 9. But the decimal
0.999 . . . with an infinite number of digits 9 is not smaller, but equal to 1! This amazing fact
is true, even if it seems to go against our intuition. We should consider this example as a
warning that things may get quite unusual when we work with infinity. The explanation
of this nontrivial observation is based on the notion of the sum of a geometric series, a topic
considered in more advanced math courses.

10.15 Advantages and Disadvantages of Decimals over Fractions

We would like to talk about advantages and disadvantages of working with the decimal
form of rational numbers in comparison with fractions. The list below was created with the
participation of students.

Advantages of decimals over fractions

1. One of the main advantages of decimals is historical: traditionally, calculators display
answers in decimals. Since today we use calculators more often than a piece of paper, we
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have acquired a habit of working with decimals. Many modern calculators are capable of
working with fractions as well, but still most of us use basic built-in features that operate
with the decimal form of numbers.

2. Usually, addition is easier to perform in decimal form. For example, compare the cal-
culation

7
25

+
13
40

=
7× 8
200

+
13× 5
200

=
56 + 65

200
=

121
200

with the same calculation in the decimal form

0.28 + 0.325 = 0.605

3. Very often the magnitude of a number is easier to read in decimal form. For example,

it may be easier to see that 0.605 is slightly larger than 0.5 than
121
200

> 1
2 , even though 0.605

and
121
200

are the same number.

Disadvantages of decimals over fractions

1. Many numbers have infinite decimal representations, which means that, in practice, we
are forced to work with their approximate values. This may be one of the main disadvantages
of decimal representations, which is an important point in science and engineering. In ap-
plications, one may want to be very careful about round up errors since they may accumulate
and produce a lot of problems.

2. It turns out that multiplication is often easier for fractions than for decimals. For exam-
ple, compare the calculation

1
25
× 5

13
=

1× �5
�5× 5× 13

=
1

5× 13
=

1
65

with the same calculation in decimal form

0.04 · 0.384615 =?

Summary. Both fractional and decimal representations of rational numbers have their
own pros and cons.

The choice of the form is dictated by the nature of computation.

10.16 Exercises

10.16.1 Recognition of rational and irrational numbers

Exercise 10.1 Which of the following numbers are whole?

(a) 5

(b) 0

(c) -7

(d)
1
2

(e) 0.5

(f)
6
3

(g) −10
5
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Exercise 10.2 Which of the following numbers are integer?

(a) 5

(b) 0

(c) -7

(d)
1
2

(e) 0.5

(f)
6
3

(g) −10
5

Exercise 10.3 Which of the following numbers are rational, and which are irrational?

(a) -5

(b) 0

(c) −7
√

3

(d)
1
2

(e) 0.3

(f) 12

(g)
8

13

(h) π

(i)
√

2

(j)
√

9

(k) −
√

4

Exercise 10.4 Which of the following numbers are irrational?

(a) 0. 25

(b) 0.25

(c) 0.25

(d) 0.3

(e) 28

(f) 7π

(g)
√

4

(h)
√

13

(i)

√
10
40

(j)
√

3

(k) 4
√

3

(l)
√

100

10.16.2 Conversion from fractions to decimals

Exercise 10.5 What are advantages and disadvantages of using fractions over decimal
representations in calculations?

Exercise 10.6 Using long division, convert each fraction to decimal form. Which
of the fractions have terminating, and which have nonterminating periodic decimal
representation?

(a)
7

10
(b)

15
4

(c)
1
3

(d)
5
6

Exercise 10.7 Using a calculator, convert each fraction to decimal form. For nonter-
minating periodic decimal representations write an answer by using the notation c for
the repeating periodic part.
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(a)
2

125

(b)
18
25

(c)
5
6

(d)
4

11

(e)
1
7

(f)
1
9

(g)
13
9

(h)
1

12

(i)
5

13

Exercise 10.8 Convert the following fractions to decimals by completing the denom-
inator to the full power of 10, if necessary. Do not use a calculator.

(a)
1

1000

(b)
8

100

(c)
324
10

(d)
1
4

(e)
2
5

(f)
5
8

(g)
7

20

(h)
1

125

(i)
13

200

(j)
7

25

Example.
2

10
= 0.2,

3
4

=
3× 25
4× 25

=
75

100
= 0.75

10.16.3 Recognition of the type of decimal representation of a fraction

Exercise 10.9 Without converting to decimal form, determine whether the following
numbers have (A) terminating decimal, (B) repeating nonterminating, or (C) nonre-
peating nonterminating decimal representation.

(a)
34

100

(b)
1
4

(c)
1

1024

(d)
11

366

(e)
1
√

2

(f)
30
60

(g)
13
25

(h)
7

100

(i)
3

128

(j)
123
347

(k)
1

1250

(l)
2
3

(m)
3
6

(n)
2

13

(o)
13

213 · 524

(p)
10

111111

(q)
8

17

(r)
13
70

(s)
16
25

(t)
213
555

(u)
333
555



Chapter 10. WORLD OF REAL NUMBERS 149

10.16.4 Conversion from decimals to fractions

Exercise 10.10 Convert the following decimals to fractions. Simplify

0.9

0.0025

0.04

1.25

0.3

0.3

0.03

0.003

0.0003

0.37

0.037

0.37

5.2

0.02

0.16

0.125

0.34

1.1

0.4

0.312

0.34

0.4

0.36

0.9

0.12

0.40

0.02

0.002

0.12

2.12

0.51

0.051

10.16.5 Additional questions on repeating nonterminating decimals

Exercise 10.11

(a) Is the number
1

1 · 2 · 3 · 4 · 5 · 6 · 7
rational or irrational?

(b) Computation on a standard calculator provides the decimal representation with
11 digits after the decimal point

1
1 · 2 · 3 · 4 · 5 · 6 · 7

= 0.00019841269

Is it the exact value or an approximate value of the number? Explain.

Exercise 10.12 Are the following numbers rational or irrational?

(a) 0.10 = 0.101010101010 . . .

(b) 0.101001000100001000001 . . . (the number of zeros grows between ones)

(c) 0.123456789101112131415 . . . (digits of all counting numbers written in the row)

Exercise 10.13 Convert the decimals 0.9, 0.99, and 0.9999 to fractions.

Exercise 10.14 Which of the numbers in the following pairs is larger?

(a) 0.345 or 0.345 (b) 0.345 or 0.3451 (c) 0.345 or 0.3455



11. OPERATIONS WITH FRACTIONS

The reciprocal of a fraction.

11.1 Arithmetic Operations with Fractions

Rational numbers can be represented as fractions with integer numerator and denominator.
In this chapter, we review the arithmetic operations with fractions and discuss some tech-
niques to perform these operations in an efficient and elegant way. In some sense, we again
refer to the culture of calculations, as we did in Chapter 2.

Many people admit that, for integers, addition and subtraction seem to be easier oper-
ations than multiplication and division. Surprisingly, the situation is the opposite for frac-
tions: the addition and subtraction of fractions are not very popular operations since they
require using a common denominator.

11.2 Multiplication of Fractions

Here is important advice for the multiplication of fractions: Simplify before multiplying! The
advantages of this idea are illustrated by the following examples.

150
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Example 11.1 Multiply
5

12
× 4

15
.

Solution A straightforward way is to multiply 5×4 in the numerator and 12×15 in the
denominator first and then simplify. This way is not efficient, and there is a better way. We
first cancel common factors in the numerators and denominators:

5
1

12
3

× 4
1

15
3

=
1× 1
3× 3

=
1
9

The multiplication becomes very simple and we avoid large numbers in our calculation.

Example 11.2 Multiply
3

20
× 2

15
× 55

7
.

Solution

3
20

10

× 2
1

15
3

× 55
11

7
= �3× 1× 11

10× �3× 7
=

11
70

Example 11.3 Multiply
20

121
× 33

40
.

Solution
20

1

121
11

× 33
3

40
2

=
1× 3

11× 2
=

3
22

11.3 Division of Fractions

Recall that the division by a fraction
c
d

is equivalent to the multiplication by a flipped frac-

tion
d
c

, called the reciprocal fraction.

Let a, b, c, and d be counting numbers. Then

a
b
÷ c
d

=
a
b
× d
c

For example,
1
4
÷ 4

5
=

1
4
× 5

4
=

5
16

It is recommended to perform division step-by-step.
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Step 1. Convert the division problem into a multiplication problem.

Step 2. Simplify (cancel as many common factors as possible).

Step 3. Multiply fractions.

Warning. Do not simplify before reversing fractions. This may lead to incorrect results.
For example,

1

�4
÷ �4

5
“ =′′

1
5

is not correct ! The correct way is shown above.

Example 11.4 Calculate
1
3
÷ 7

3
.

Solution
1
3
÷ 7

3
=

1

�3
× �3

7
=

1
7

Example 11.5 Calculate
17
11
÷ 4

11
.

Solution
17
11
÷ 4

11
=

17

��11
×�

�11
4

=
17
4

Example 11.6 Calculate
3
5
÷ 5

7
.

Solution
3
5
÷ 5

7
=

3
5
× 7

5
=

21
25

Example 11.7 Calculate
6

25
÷ 2

5
.

Solution
6

25
÷ 2

5
=

6
3

25
5

× 5
1

2
1

=
3× 1
5× 1

=
3
5

Example 11.8 Calculate 3÷
1

1
3

.
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Solution

3÷
1

1
3

 = 3×
1
3
1

= 3× 1
3

= 1

Example 11.9 Solve for x.

(a) x × 1
4

= 2

(b) x ÷ 1
4

= 2

(c)
1
4
÷ x = 2

(d)
1
4
÷
(1
x

)
= 2

(e)
1
4

= 2÷ x

(f)
1
4

= 2× x

Solution

(a) x × 1
4
×4 = 2×4, x = 2× 4 = 8

(b) x ÷ 1
4

= 2, x × 4 = 2, x =
2
4

=
1
2

(c)
1
4
÷ x×x = 2×x,

1
4

= 2x, x = 8

(d)
1
4
÷
(1
x

)
= 2,

1
4
× x = 2, x = 8

(e)
1
4
× x = 2, x =

1
8

(f)
1
4

= 2× x, x =
1
8

11.4 Addition of Fractions

The addition of fractions is rarely a favorite operation of students since it is based on a
complicated rule that involves a common denominator. Students may even wonder why
they have to perform addition in this way rather than using some some simpler rule such as

a
b

+
c
d

“ =′′
a+ c
b+ d

Question How would you answer the question why this “naive” rule is not used for
adding fractions.

Answer Here is one of the possible explanations. The rules in mathematics are not cre-
ated by a voluntary choice of scientists or math teachers, but are dictated by nature. Such
rules exist because this is the only possible way for all things to work together without a
contradiction.

We could find many examples when the “naive” addition rule does not work, but leads
us to nonsense. Suppose that we have an apple that we cut into two halves.

so that
1
2

+
1
2

= 1
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Even in this simple situation, the easy “naive” rule gives us the wrong answer

1
2

+
1
2

“ =′′
1 + 1
2 + 2

=
2
4

=
1
2

!

This answer certainly contradicts our real life experience. Hence the “complicated” addition
rule for fractions is dictated by the real world around us.

Let us review formulas for the addition of fractions. If both fractions have the same
denominator, the rule is very simple.

Let a, b, and c be whole numbers with b , 0. Then

a
b

+
c
b

=
a+ c
b

Example 11.10

1
8

+
5
8

=
1 + 5

8
=

6
8

=
3
4

1
3

+
2
3

=
1 + 2

3
=

3
3

= 1

The general case is reduced to this simple case by creating a common denominator.

Let a, b, c, and d be whole numbers with d,b , 0. Then

a
b

+
c
d

=
a×d
b×d

+
c×b
d×b︸       ︷︷       ︸

the same denominator

=
ad + bc
bd

Example 11.11

1
3

+
1
2

=
1×2
3×2

+
1×3
2×3

=
2 + 3

6
=

5
6

We use the product b × d of denominators in these formulas as a common denominator.
However, in practice, there is often a more efficient way.

Example 11.12 Calculate
8

13
+

41
26

.

Solution It would be a correct, but not efficient way to add fractions as

8
13

+
41
26

=
8×26

13×26
+

41×13
26×13

=
8× 26 + 41× 13

26× 13
= . . .
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Note that 26 = 2× 13. So, we can use a smaller common denominator
8

13
+

41
26

=
8×2

13×2
+

41
26

=
16
26

+
41
26

=
57
26

This is the final answer since 57 and 26 are relatively prime, so the fraction
57
26

is in simplest

form.

Example 11.13 Calculate
61

1000
+

7
10

.

Solution Note that 1000 = 100× 10. Then
61

1000
+

7
10

=
61

1000
+

7×100
10×100

=
61

1000
+

700
1000

=
761

1000

Example 11.14 Calculate
5

12
+

7
18

.

We solve this problem in two ways: using a straightforward general formula with 12×18
as a common denominator and using a smaller common denominator.

Solution 1.
5

12
+

7
18

=
5× 18 + 7× 12

12 · 18
=

90 + 84
12 · 18

=
174
216

=
29
36

Solution 2. Note that 12 = 6 × 2 and 18 = 6 × 3. Hence 6 is already the common part of
both denominators. Then

12× 3 = 6× 2× 3 = 18× 2

which can be used as a common denominator:
5

12
+

7
18

=
5×3

2× 6×3
+

7×2
3× 6×2︸                 ︷︷                 ︸

the same denominator

=
5 · 3 + 7 · 2

6 · 2 · 3
=

15 + 14
36

=
29
36

There are obvious advantages of Solution 2. We avoided large numbers (operations with
large numbers often produce many mistakes), and we did simpler calculations.

In summary, we can often add
a
b

+
c
d

with a smaller common denominator than just b×d.

Actually, this smaller common denominator is LCM(b,d). Indeed, in the above examples, for
common denominators we used the least common multiples of the denominators of given
fractions

LCM(26,13) = 26, LCM(1000,10) = 1000, LCM(12,18) = 36

Example 11.15 Calculate
1
8

+
5
6

.

Solution We have LCM(8,6) = 24 and

8×3 = 24 = 4×6

Then
1
8

+
5
6

=
1×3
8×3

+
5×4
6×4

=
3 + 20

24
=

23
24
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11.5 Subtraction of Fractions

The same observations apply to the subtraction of fractions. When both fractions have the
same denominator, we use the simple rule.

Let a, b, and c be whole numbers with b , 0. Then

a
b
− c
b

=
a− c
b

When the denominators are different, we first try to make them the same.

Let a, b, c, and d be whole numbers with d,b , 0. Then

a
b
− c
d

=
a×d
b×d
− c×b
d×b︸       ︷︷       ︸

the same denominator

=
ad − bc
bd

In practice, we often prefer to use LCM(b,d) as a common denominator rather than b×d.

Example 11.16 Find
19
77
− 2

11
.

Solution
19
77
− 2

11
=

19
77
− 2×7

11×7
=

19− 14
77

=
5

77

Example 11.17 Find
5

12
− 1

18
.

Solution
5

12
− 1

18
=

5×3
6× 2×3

− 1×2
6× 3×2

=
15− 2

36
=

13
36

Using LCM(b,d) instead of b×d as a common denominator in
a
b

+
c
d

or
a
b
− c
d

simplifies

calculations and reduces the risk of computational mistakes.

11.6 Comparison of Fractions

Sometimes, we may want to compare two rational numbers written as fractions. The case
where both fractions have the same denominator is simple.
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Let b be a counting number, and let a and c be integers. Then
a
b
<
c
b

if and only if a < c.

Example 11.18
5

17
<

8
17

since 5 < 8, and
−3
5
<

1
5

since −3 < 1.

In the case of fractions with different denominators, we use the cross-product.

Let b and d be counting numbers, and let a and c be integers. Then
a
b
<
c
d

if and only

if ad < bc.

Example 11.19
3
4
<

4
5

since 3× 5 < 4× 4.

11.7 Exercises

11.7.1 The simplest form of fractions

Exercise 11.1 Find the simplest form of the following fractions:

(a)
25

100

(b)
48
63

(c)
50
72

(d)
75
25

(e)
35
42

(f)
36
32

(g)
27

840

(h)
42
49

(i)
72
24

(j)
32
60

(k)
216
72

(l)
600
720

11.7.2 Addition of fractions using the least common denominator

Exercise 11.2 Find the smallest common denominator of given fractions. Add frac-
tions without a calculator. Express the result in simplest form.
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(a)
1
8

+
5
8

(b)
1
4

+
1
2

(c)
3
7

+
1
3

(d)
8

13
+

41
26

(e)
7

22
+

5
121

(f)
61

1000
+

7
10

(g)
5
6
− 8

15

(h)
25
8
− 4

5

(i)
3
5
− 4

7

(j)
5
6
− 8

15

(k)
1

18
+

1
5

(l)
10
11
− 5

12

(m)
8

18
+

2
9

(n)
9

28
− 11

35

(o)
7
9
− 3

5

(p)
8
9

+
1

12
+

3
8

Exercise 11.3 Explain how this calculation could be improved.

10
12

+
2

36
=

10 · 36 + 2 · 12
12 · 36

=
360 + 24
12 · 36

=
384
432

=
8
9

11.7.3 Multiplication of fractions

Exercise 11.4 Simplify before performing multiplication. Multiply without a calcu-
lator.

(a)
1
2
· 4

5
· 5

6

(b)
1
2
· 2

3

(c)
9
8
· 5

36
· 7

10

(d)
23
17
· 51

46

(e)
5

16
· 56

42
· 2

15

(f)
11
12
· 24

77

(g)
5
7
· 2

9
· 7

5

(h)
6

25
· 5

9
· 3

2

Exercise 11.5 Find the powers.

(a)
(1

2

)3
(b)

(4
3

)2
(c)

(2
3

)4
(d)

(10
3

)3

Exercise 11.6 Explain how this calculation could be improved.

7
9
· 3

14
=

63
126

=
1
6
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11.7.4 Division of fractions

Exercise 11.7 Replace division with multiplication by the reciprocal of the divisor.
Simplify and multiply without a calculator.

(a)
1
2
÷ 1

3

(b)
1
2
÷ 1

4

(c)
1
4
÷ 4

5

(d)
8
9
÷ 4

21

(e)
8
5
÷ 16

45

(f)
7

27
÷ 49

81

Exercise 11.8 Explain what is wrong with this calculation and correct it.

2
5
÷ 10

6
=

1
5
÷ 10

3
=

1
1
÷ 2

3
=

3
2

Exercise 11.9 Calculate and reduce to the simplest form.

(a)
1

22 · 32 +
1

2 · 32

(b)
1

17 · 5
+

1
52 · 2

(c)
7
8
−
(2

3
− 1

6

)
(d)

(7
8
− 2

3

)
− 1

6

11.7.5 Simple equations with fractions

Exercise 11.10 Solve for x.

(a) x · 3
5

=
4

15

(b) x ÷ 2
7

=
7

12

(c)
2
3
· x =

4
7

(d)
7
9
÷ x =

7
18

(e) x ÷ 1
2

=
1
2

(f) x ÷ 12
25

=
3
5

(g) x · 12
25

=
3
5

(h)
12
25
÷ x =

3
5

(i)
1
1
x

= 5

(j)
1(
1

( 1
x )

) = 5

Exercise 11.11 Solve for x.

(a) x ÷ 3 = 4

(b) 3÷ x = 4

(c) 3 = x ÷ 4

(d) 3 · x = 4

(e) 3 = x · 4

(f) 3 = 4÷ x
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11.7.6 Comparison of fractions

Exercise 11.12 Which of the numbers in the following pairs is larger?

(a)
1
2

and
1
3

(b)
2
5

and
1
2

(c)
2
3

and
3
4

(d)
7
8

and
8
9

(e)
5
6

and
7
8

(f)
43
50

and
1
2

(g)
1041
3040

and
3040
1041

(h)
39
40

and
38
39

(i)
98
99

and
97
98



12. MIXED FRACTIONS

Mixed fractions show the magnitude of a rational number.

12.1 Different Representations of Rational Numbers

We know that

3.5
7
2

3
1
2

represent three forms of the same number: decimal representation, (improper) fraction form,

and mixed fraction form. Recall that to find the mixed form of an improper fraction
a
b

, where

a > b are counting numbers, we have to divide the numerator by the denominator with re-
mainder. Each of these representations has advantages and disadvantages, but as any notion
in mathematics, each form was invented for a purpose.

Question What are the advantages of writing rational numbers in the mixed fraction
form?

Possible answer

• It seems that the main advantage of the mixed fraction form is that it gives us a better

idea of the magnitude of a number. For example, it is hard to judge how large
55
9

is

unless we convert it to mixed form
55
9

= 6
1
9

to see that it is “six and a little bit.”

161
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• Mixed fractions are commonly used in cooking recipes, vehicle manufacturing, con-
struction, and many other types of production.

• Another advantage of mixed fractions is that huge numerators can be reduced to smaller
ones by extracting integer parts.

12.2 Addition and Subtraction of Fractions in Mixed Form

Sometimes, converting fractions to mixed form simplifies the addition since the numerators
become smaller. Yet, the mixed form of fractions is not well designed for the arithmetic oper-
ations. Extracting the integer part helps us to scale down the numerator; however, addition
and subtraction still involve work with a common denominator and contain an inconvenient
nuance of occasional borrowing of the units from the integer part. As for multiplication and
division, these operations are tricky to perform in mixed form. In most cases, it is strongly
recommended to convert fractions in mixed form to their improper form before multiplying
or dividing them.

The important point about mixed fractions is that they are actually the sum of two parts:
an integer and a fraction. For example,

6
1
9

= 6 +
1
9

In this sense, a mixed fraction is not one number, but a pair of numbers. All difficulties of
arithmetic operations with mixed fractions originate from this fact.

Example 12.1 The addition 6
1
9

+ 5
1

18
is worked out separately on the integer and

fractional parts, and then the results are collected in one mixed fraction

6
1
9

+ 5
1

18
= 6 +

1
9

+ 5 +
1

18
= (6 + 5) +

(1
9

+
1

18

)
= 11 +

1
6

= 11
1
6

Example 12.2 Find 2
3
5

+ 3
1
2

.

Solution

2
3
5

+ 3
1
2

= (2 + 3) +
(3

5
+

1
2

)
= 5 +

11
10

= 5 + 1
1

10
= 6

1
10

Note that we have to extract the integer part from the result of addition of fractional parts.

Example 12.3 Find 6
9

10
+ 1

7
15

.
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Solution

6
9

10
+ 1

7
15

= (6 + 1) +
( 9

10
+

7
15

)
= 7 +

(27
30

+
14
30

)
( we use that LCM(10,15) = 30)

= 7 +
41
30

= 7 + 1
11
30

= 8
11
30

Example 12.4 Find 7
1
6
− 4

9
16

.

Solution

7
1
6
− 4

9
16

= (7− 4) +
(1

6
− 9

16

)
= 3 +

( 8
48
− 27

48

)
(we use that LCM(6,16) = 48)

= 3− 19
48

= (need to borrow) 2 +
(
1− 19

48

)
= 2 +

(48
48
− 19

48

)
= 2 +

29
48

= 2
29
48

12.3 Multiplication and Division of Fractions in Mixed Form

Multiplication of mixed fractions is a common source of mistakes for students. If you ask

students in a class to multiply, for example, 2
1
3
× 3

1
2

, it is very likely that someone will do it
as

2
1
3
× 3

1
2

“ =′′ (2× 3) +
(1

3
× 1

2

)
= 6 +

1
6

= 6
1
6

Of course, it is wrong. The flaw of this computation becomes clear if we again recall that
mixed fractions are the sums of two parts

2
1
3

= 2 +
1
3

3
1
2

= 3 +
1
2

Then
2

1
3
× 3

1
2

=
(
2 +

1
3

)
×
(
3 +

1
2

)
This reminds us how we multiply such expressions in algebra

(a+ c)× (b+ d) = a× c+ b × c+ a× d + b × d

(Maybe this is what makes multiplying mixed fractions challenging: it contains elements
of more advanced math.) Nevertheless, we need to perform multiplication according to the
general rule (

2 +
1
3

)
×
(
3 +

1
2

)
= 2× 3 +

1
3
× 3 + 2× 1

2
+

1
3
× 1

2
= 6 + 1 + 1 +

1
6

= 8
1
6
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We see that the multiplication of fractions in mixed form is quite a complicated procedure.
At the same time, we remember that the multiplication of regular fractions (that could be in
improper form) is not a difficult operation. This implies the general recommendation.

When multiplying or dividing fractions in mixed form, first convert them to improper
form.

Example 12.5 Following this recommendation, we can obtain the much simpler cal-
culation for the last example:

2
1
3
× 3

1
2

=
7
3
× 7

2
=

49
6

= 8
1
6

Example 12.6 Find 2
2
5
÷ 3.

Solution

2
2
5
÷ 3 =

12
5
÷ 3 =

12
5× 3

=
4
5

Example 12.7 Find 9÷ 2
1
4

.

Solution

9÷ 2
1
4

= 9÷ 9
4

= 9× 4
9

= 4

Example 12.8 Find 7
1
2
÷ 2

1
2

.

Solution

7
1
2
÷ 2

1
2

=
15
2
÷ 5

2
=

15
2
× 2

5
= 3

12.4 Exercises

12.4.1 Conversion of fractions to mixed form

Exercise 12.1 Convert the following fractions to mixed form:

(a)
3
2

(b)
4
3

(c)
28
3

(d)
38
13
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12.4.2 Addition of fractions in mixed form

Exercise 12.2 Complete the addition. Write your final answer in mixed form.

(a) 2
5
7

+ 3
2
7

(b) 1
1
7

+ 5
5
7

(c) 3
2
7

+ 2
6
7

(d) 6
9

10
+ 1

7
15

(e) 4
3
5

+ 1
2
5

(f) 4
13
27

+ 8
17
27

(g) 4
13
25

+
3

50

(h) 6
1

12
+

1
18

(i) 5
3
5

+ 1
3
5

(j) 3
2
7

+ 2
6
7

(k) 3
1
5

+ 5
2
5

(l) 2
1
2

+
1
6

(m) 2
3

10
+ 6

1
9

(n) 4
2
5

+ 7
4
5

12.4.3 Subtraction of fractions in mixed form

Exercise 12.3 Subtract. Write your final answer in mixed form.

(a) 8
3
4
− 4

(b) 6
2
5
− 3

(c) 9
3
8
− 3

1
16

(d) 9
4
9
− 1

3

(e) 8
3

16
− 5

8

(f) 1
1
5
− 2

5

(g) 1
1
9
− 2

9

(h) 1
1
8
− 5

8

12.4.4 Multiplication of fractions in mixed form

Exercise 12.4 Multiply. Write your final answer in mixed form.

(a) 1
1
5
· 2

(b) 2
1
5
· 3

(c) 8 · 31
4

(d) 2 · 53
4

(e) 2
1
5
· 9

(f) 1
1
5
· 1

6

(g) 2
2
5
· 2

3

(h) 7
1
3
· 21

4

(i) 1
1
5
· 1

6

(j)
3
7
· 31

3
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12.4.5 Division of fractions in mixed form

Exercise 12.5 Divide. Write your final answer in mixed form.

(a) 1
1
5
÷ 2

(b) 2
2
5
÷ 3

(c) 9÷ 2
1
4

(d) 3
1
7
÷ 2

(e) 2÷ 5
1
3

(f) 2
4
5
÷ 2

(g)
5
9
÷ 4

1
6

(h)
5
6
÷ 3

1
3

Exercise 12.6 Simplify

(a) 2
8

15
−
(
1

3
10

+
2
5

)
(b) 1

4
7
·

20÷ 2
15 + 255

7 ÷ 1 1
35

217
9 ÷ 42

3 − 1

12.4.6 Comparison of fractions in mixed form

Exercise 12.7 Compare the following fractions in mixed form.

(a) 1
1
2

and 1
1
3

(b) 3
2
5

and 2
3
5
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